Solutions Architect's
Handbook

Saurabh Shrivastava and Neelanjali Srivastav
Foreword by Kamal Arora, Senior Manager,

Solutions Architecture, AWS

Solutions Architect's
Handbook

Kick-start your solutions architect career by learning
architecture design principles and strategies

Saurabh Shrivastava
Neelanjali Srivastav

BIRMINGHAM - MUMBAI

Solutions Architect's Handbook

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Karan Gupta

Content Development Editor: Ruvika Rao
Senior Editor: Afshaan Khan

Technical Editor: Gaurav Gala

Copy Editor: Safis Editing

Project Coordinator: Francy Puthiry
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Joshua Misquitta

First published: March 2020
Production reference: 1200320
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83864-564-9

www.packt.com

http://www.packt.com

To our loving daughter Sanvi, who fills our lives with happiness and joy.

— Saurabh and Neelanjali

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Foreword

The technology realm has always been fast-moving, and in order to keep growing in their
careers, IT professionals need to incrementally acquire new skills over time. However, in
the last decade, this trend of fast change has become dominant with cloud computing,
becoming the 'new normal.' Now, almost every day, there are some new announcements,
features, and service updates from cloud providers, which necessitates a focus on a culture
of continuous learning for everyone involved. Along with this, now the typical boundaries
between the usual roles of a developer, database administrator, security professional,
build/release engineer, and so on have started to blur, and this has also resulted in new
roles being created that focus on big-picture and end-to-end ownership. One such role is
that of a 'Solutions Architect,' which started to evolve from existing roles in industry like
'Application Architect' and 'IT Architect' and has now become mainstream. There are also
variations of this role. However, the most common variant is that of 'Cloud Solutions
Architect," which is a pretty dynamic role in itself.

Oftentimes, IT professionals want to switch roles, but they lack direction on how to be
successful on that path. This book focuses on this very aspect around an effective transition
from an existing IT role to that of a Solutions Architect and explains in a very logical
manner the steps to embark on that journey. It starts off with a simple, very relatable
explanation of what this role entails and how it differs from a few of the other similar types
of profiles. Post that, it goes into the technical skills and aspects of knowledge that are
needed to be a successful Solutions Architect. This begins with basic design pillars and
architectural principles (including high availability, reliability, performance, security, and
cost optimizations), followed by a deep dive into each one of those. The book also covers
some key concepts around cloud-native architectures, DevOps, and the data engineering
and machine learning domains, which are the cornerstone of any modern-day architecture.

I have personally been through this journey of being a Solutions Architect from a
development team lead, and so has Saurabh, and we always wished for a handbook that
could have helped us back then. So, to fill that major gap in the industry, Saurabh has
created this very detailed book, which is based on personal experiences and learnings that
makes it a very relatable read for anyone from a variety of backgrounds. I highly
recommend you read this book and keep it as a handy reference always, as in it you will
find very important nuggets of knowledge that will help you be a successful Solutions
Architect, and open up a new world of infinite possibilities!

Kamal Arora
Senior Manager, Solutions Architecture, AWS
https://www.amazon.com/Kamal-Arora/e/BO7HLTSNRJ/

AWS Solution Architect Leader and author of two Packt books, Cloud-Native Architectures
and Architecting Cloud-Native Applications

https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/
https://www.amazon.com/Kamal-Arora/e/B07HLTSNRJ/

Contributors

About the authors

Saurabh Shrivastava is a technology leader, author, inventor, and public speaker with over
16 years of experience in the IT industry. He currently works at Amazon Web Services as a
Solutions Architect Leader and enables global consulting partners and enterprise customers
on their journey to the cloud. Saurabh has also led global technical partnerships and also
holds a patent in the area of cloud platform automation.

Saurabh has written various blogs and white papers in a diverse set of technologies, such as
big data, IoT, machine learning, and cloud computing. Prior to AWS, Saurabh worked as an
enterprise solution architect and software architect in Fortune 50 enterprises, startups, and
global product and consulting organizations.

Neelanjali Srivastav is a technology leader, agile coach, and cloud practitioner with over
14 years of experience in the software industry. She holds B.Sc. and M.Sc. degrees in
bioinformatics and information technology from Punjab University, Chandigarh. She
currently leads teams of software engineers, solution architects, and systems analysts to
modernize IT systems and develop innovative software solutions for large enterprises.

She has worked in different roles in the IT services industry and R&D space. Neelanjali is a
result-driven and top-performing leader who excels in project management and Agile
Scrum methodologies for large-scale enterprises on a global scale.

About the reviewer

Kamesh Ganesan is a cloud evangelist and seasoned technology professional with nearly
23 years of IT experience in all major cloud technologies, including Azure, AWS, Google
Cloud Platform (GCP), and Alibaba Cloud. With over 45 IT certifications, including 5
AWS, 3 Azure, and 3 GCP certifications, he's played many roles, including a certified multi-
cloud architect, cloud-native application architect, lead database administrator, and
programmer analyst. He architected, built, automated, and delivered high-quality, mission-
critical, and innovative technology solutions to help his enterprise, along with commercial
and governmental clients, to be very successful and vastly improve their business value as
a result of using multi-cloud strategies.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Chapter 1: The Meaning of Solution Architecture 6
What is solution architecture? 7
Evolution of solution architecture 11
Why is solution architecture important? 12
The benefits of solution architecture 13
Addressing the business needs and quality of delivery 14
Selecting the best technology platform 15
Addressing solution constraints and issues 16
Helping in resource and cost management 16
Managing solution delivery and project life cycle 17
Addressing non-functional requirements 17
Solution architecture in the public cloud 19
What is the public cloud? 19
Public clouds, private clouds, and hybrid clouds 20
The public cloud architecture 21
Public cloud providers and cloud service offering 22
Summary 24
Chapter 2: Solution Architects in an Organization 25
Types of solution architect role 26
Enterprise solution architect 29
Solution architect 30
Technical architect 30
Cloud architect 31
Architect evangelist 32
Infrastructure architect 32
Network architect 33
Data architect 34
Security architect 35
DevOps architect 36
Understanding a solution architect's responsibilities 37
Analyzing user requirements 38
Defining non-functional requirements 38
Engaging and working with stakeholders 41
Handling various architecture constraints 41
Making technology selections 44
Developing a proof of concept and a prototype 44

Designing solutions and staying through delivery 45

Table of Contents

Ensuring post-launch operability and maintenance
Working as a technology evangelist
Solution architects in an agile organization
Why Agile methodology?
Agile manifesto
Agile process and terminology
Sprint ceremonies
Agile tools and terms
Agile versus waterfall
Agile architecture

Summary

Chapter 3: Attributes of the Solution Architecture

Scalability and elasticity

The capacity dilemma in scaling

Scaling your architecture

Static content scaling

Server fleet elasticity

Database scaling
High availability and resiliency
Fault-tolerance and redundancy
Disaster recovery and business continuity
Extensibility and reusability
Usability and accessibility
Portability and interoperability
Operational excellence and maintainability
Security and compliance

Authentication and authorization

Web security

Network security

Infrastructure security

Data security
Cost optimization and budget
Summary

Chapter 4: Principles of Solution Architecture Design

Scaling workload

Predictive scaling

Reactive scaling
Building resilient architecture
Design for performance
Using replaceable resources

Creating immutable infrastructure

Canary testing

Think loose coupling

47
47
47
48
49
50
51
52

54
55

56
57
58
59
60
61
61
62
64
65
67
69
70
72
73
74
74
74
75
75
76
77

78
79
79
82
83
85
86

87
87

88

[ii]

Table of Contents

Think service not server

Using the right storage for the right need
Think data-driven design

Overcoming constraints

Adding security everywhere

Automating everything

Summary

Chapter 5: Cloud Migration and Hybrid Cloud Architecture Design

Benefits of cloud-native architecture
Creating a cloud migration strategy
Lift and Shift migration
Rehost
Replatform
Relocate
Cloud-native approach
Refactor
Repurchase
Retain or retire
Retain
Retire
Steps for cloud migration
Discovering your workload
Analyzing the information
Creating migration plan
Designing the application
Performing application migration to the cloud
Data migration
Server migration
Integration, validation, and cutover
Live migration cutover
Operating cloud application
Application optimization in the cloud
Creating a hybrid cloud architecture
Designing a cloud-native architecture
Popular public cloud choices
Summary
Further reading

Chapter 6: Solution Architecture Design Patterns
Building an n-tier layered architecture
The web layer
The application layer
The database layer
Creating multi-tenant SaaS-based architecture
Building stateless and stateful architecture designs

90
92
94
95
97
98
99

101
102
104
106
106
107
107
108
109
109
110
110
111
112
113
115
117
121
124
124
126
127
128
130
131
133
135
137
138
139

140
141
142
143
143
144
146

[iii]

Table of Contents

Understanding SOA
SOAP web service architecture
RESTful web service architecture
Building an SOA-based e-commerce website architecture
Building serverless architecture
Creating microservice architecture
Real-time voting application reference architecture
Building queue-based architecture
Queuing chain pattern
Job observer pattern
Creating event-driven architecture
Publisher/subscriber model
Event stream model
Building cache-based architecture
Cache distribution pattern in a three-tier web architecture
Rename distribution pattern
Cache proxy pattern
Rewrite proxy pattern
App caching pattern
Memcached versus Redis
Understanding the circuit breaker pattern
Implementing the bulkheads pattern
Creating a floating IP pattern
Deploying an application with a container
The benefit of containers
Container deployment
Database handling in application architecture
High-availability database pattern
Avoiding anti-patterns in solution architecture
Summary

Chapter 7: Performance Considerations
Design principles for architecture performance
Reducing latency
Improving throughput
Handling concurrency
Apply caching
Technology selection for performance optimization
Making a computational choice
Selecting the server instance
Working with containers
Docker
Kubernetes
Going serverless
Choosing a storage
Working with block storage and storage area network (SAN)

148
149
152
153
154
156
158
159
160
162
163
163
165
166
169
170
171
173
174
175
176
176
178
179
180
182
184
186
187
189

191
192
192
194
196
197
199
199
200
203
203
204
205
207
207

[iv]

Table of Contents

Working with file storage and network area storage (NAS)
Working with object storage and the cloud data storage
Choosing the database
Online transactional processing (OLTP)
Nonrelational databases (NoSQL)
Online analytical processing (OLAP)
Building a data search
Making the networking choice
Defining a DNS routing strategy
Implementing a load balancer
Applying autoscaling
Managing performance monitoring
Summary

Chapter 8: Security Considerations
Designing principles for architectural security
Implementing authentication and authorization control
Applying security everywhere
Reducing blast radius
Monitoring and auditing everything all the time
Automating everything
Protecting data
Preparing a response
Selecting technology for architectural security
User identity and access management
FIM and SSO
Kerberos
AD
Amazon Web Services (AWS) Directory Service
Security Assertion Markup Language (SAML)
OAuth and OpenlID Connect (OIDC)
Handling web security
Web app security vulnerabilities
Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks
SQLi attacks
XSS attacks
Cross-Site Request Forgery (CSRF) attacks
Buffer overflow and memory corruption attacks
Web security mitigation
Web Application Firewall (WAF)
DDoS mitigation
Securing an application and its infrastructure
Application and operating system hardening
Software vulnerabilities and secure code
Network, firewall, and trusted boundary
IDS/IPS
Host-based IDS
Network-based IDS
Data security

208
208
210
211
212
212
213
214
215
216
217

219
221

222
223
223
224
224
225
225
226
226
227
227
229
229
231
232
232
234
236
236
236
238
238
238
239
239
239
240
242
242
243
243
246
247
247
248

[v]

Table of Contents

Data classification
Data encryption
Encryption key management
Envelope encryption
AWS Key Management Service (KMS)
Hardware security module (HSM)
Data encryption at rest and in transit
Security and compliance certifications
The cloud's shared security responsibility model

Summary

Chapter 9: Architectural Reliability Considerations
Design principles for architectural reliability
Making systems self-healing
Applying automation
Creating a distributed system
Monitoring capacity
Performing recovery validation
Technology selection for architecture reliability
Planning the RTO and RPO
Replicating data
Synchronous versus asynchronous replication
Replication methods
Planning disaster recovery
Backup and restore
Pilot light
Warm standby
Multi-site
Applying best practices for disaster recovery
Improving reliability with the cloud
Summary

Chapter 10: Operational Excellence Considerations
Designing principles for operational excellence
Automating the operation
Making incremental and reversible changes
Predicting failures and responding
Learning from the mistake and refining
Keeping operation's runbook updated
Selecting technologies for operational excellence
Planning for operational excellence
IT Asset Management (ITAM)
Configuration management
The functioning of operational excellence
Monitoring system health
Infrastructure monitoring

Application monitoring
Platform monitoring

248
249
250
250
251
252
252
253
254

257

258
259
259
260
260
261
262
262
263
264
264
265
266
268
269
272
274
275
276
278

279
280
280
281
282
282
282
283
283
284
286
288
289
289

290
291

[vil

Table of Contents

Log monitoring
Security monitoring
Handling alerts and incident response
Improving operational excellence
ITOA
RCA
Auditing and reporting
Achieving operational excellence in the public cloud
Summary

Chapter 11: Cost Considerations

Design principles for cost optimization
Calculating the total cost of ownership
Planning the budget and forecast
Managing demand and service catalogs
Keeping track of expenditure
Continuous cost optimization

Techniques for cost optimization
Reducing architectural complexity
Increasing IT efficiency
Applying standardization and governance
Monitoring cost usage and report

Cost optimization in the public cloud

Summary

Chapter 12: DevOps and Solution Architecture Framework
Introducing DevOps
Understanding the benefits of DevOps
Understanding the components of DevOps
Cl/CD
Continuous monitoring and improvement
laC
Configuration management (CM)
Introducing DevSecOps
Combining DevSecOps and CI/CD
Implementing a CD strategy
In-place deployment
Rolling deployment
Blue-green deployment
Red-black deployment
Immutable deployment
Implementing continuous testing in the CI/CD pipeline
A/B testing
Using DevOps tools for CI/CD
Code editor
Source code management

292
295
295
298
299
300
301
302

303

305
306
306
308
309
310
311
312
312
314
316
318
323
325

326
327
328
329
330
332
333
334
335
336
337
338
338
338
340
340
341
343
344
344
345

[vii]

Table of Contents

Cl server 345
Code deployment 347
Code pipeline 349
Implementing DevOps best practices 351
Summary 352
Chapter 13: Data Engineering and Machine Learning 354
What is big data architecture? 355
Designing big data processing pipelines 357
Data ingestion 359
Technology choices for data ingestion 360
Ingesting data to the cloud 362
Storing data 364
Technology choices for data storage 366
Structured data stores 366
Relational databases 367

Data warehousing 367

NoSQL databases 368

SQL versus NoSQL databases 369

Types of NoSQL data store 370

Search data stores 370
Unstructured data stores 371

Data lakes 371
Processing data and performing analytics 373
Technology choices for data processing and analysis 375
Visualizing data 378
Technology choices for data visualization 378
Understanding loT 380
What is ML? 382
Working with data science and ML 383
Evaluating ML models — overfitting versus underfitting 385
Understanding supervised and unsupervised ML 386
Summary 388
Chapter 14: Architecting Legacy Systems 389
Learning the challenges of legacy systems 390
Difficulty in keeping up with user demand 391
Higher cost of maintenance and update 391
Shortage of skills and documentation 392
Vulnerable to corporate security issues 393
Incompatibility with other systems 394
Defining a strategy for system modernization 395
Benefits of system modernization 395
Assessment of a legacy application 397
Defining the modernization approach 398
Documentation and support 399

[viii]

Table of Contents

Looking at legacy system modernization techniques 400
Encapsulation, rehosting, and re-platforming 400
Refactoring and rearchitecting 401
Redesigning and replacing 401

Defining a cloud migration strategy for legacy systems 403

Summary 405

Chapter 15: Solution Architecture Document 406

Purpose of the SAD 407

Views of the SAD 408

Structure of the SAD 411
Solution overview 412
Business context 413
Conceptual solution overview 415
Solution architecture 416
Solution delivery 420
Solution management 421
Appendix section of SAD 422

IT procurement documentation for a solution architecture 422

Summary 424

Chapter 16: Learning Soft Skills to Become a Better Solution Architect 425

Acquiring pre-sales skills 426

Presenting to C-level executives 427

Taking ownership and accountability 429

Defining strategy execution and OKRs 430

Thinking big 431

Being flexible and adaptable 432

Design thinking 433

Being a builder by engaging in coding hands-on 436

Becoming better with continuous learning 436

Being a mentor to others 439

Becoming a technology evangelist and thought leader 439

Summary 440

Other Books You May Enjoy 441

Index 444

[ix]

Preface

This book guides readers to create a robust, scaled, highly available, and fault-tolerant
solution by learning a different aspect of solution architecture and next-generation
architecture design in a cloud environment. This book will start by providing an
understanding of solution architecture and how it fits into an agile enterprise environment.
It will take the reader through the journey of solution architecture design by providing
detailed knowledge of design pillars, advanced design patterns, anti-patterns, and the
cloud-native aspects of modern software design.

The reader will dive deep into performance optimization, security, compliance, reliability,
cost optimization, and operational excellence in solution design. This book provides an in-
depth understanding of the automation of security, infrastructure, DevOps, disaster
recovery, and the documentation of solution architecture. In addition, readers will learn
various architecture designs in cloud platform like Amazon Web Services (AWS) and how
to best utilize cloud platform for your solution design, modernization and migration need.

This book also provides a good understanding of future-proof architecture design with
data engineering, machine learning, and the Internet of Things (IoT). As a bonus, this book
will also offer a soft skill aspect to enhance your solution architecture skills and continuous
learning techniques. This book will you to start your career journey and improve your skills
in the solution architect role. By end of this book, you will have gained the required skills to
advance your career as a solution architect.

Who this book is for

This book is for software developers, system engineers, DevOps engineers, architects, and
team leaders working in the IT industry, who aspire to become solution architects and are
keen on designing secure, reliable, high-performance, and cost-effective architectures.

What this book covers

Chapter 1, The Meaning of Solution Architecture, is used as a base to define what solution
architecture is and explain its importance. It explains various benefits of having a solution
architecture in place and talks about architecting on the public cloud.

Preface

Chapter 2, Solution Architects in an Organization, talks about the different types of solution
architect roles and how they fit into the organizational structure. It explores the various
responsibilities of the solution architect in detail. It further explains the solution architect's
role fit in an agile organization along with agile processes.

Chapter 3, Attributes of the Solution Architecture, throws light on various attributes of
solution architecture, such as scalability, resiliency, disaster recovery, accessibility,
usability, security, and cost. It explains the coexistence and utilization of these architectural
attributes to create an efficient solution design.

Chapter 4, Principles of Solution Architecture Design, talks about architectural principles for
creating scalable, resilient, and high-performance architecture. It explains efficient
architecture design by applying security, overcoming constraints, and applying changes,
along with test and automation approaches. It explores architecture principals to use design
thinking effectively by exploring service-oriented architecture and taking a data-driven
approach.

Chapter 5, Cloud Migration and Hybrid Cloud Architecture Design, explains the benefits of the
cloud and approaches to design cloud-native architecture. It gives an understanding of
different cloud migration strategies and migration steps. It talks about hybrid cloud design
and explores popular public cloud providers.

Chapter 6, Solution Architecture Design Patterns, explores various architecture design
patterns, such as layered, microservice, event-driven, queue-based, serverless, cache-based,
and service-oriented with examples. It demonstrates the applicability of solution
architecture attributes and principles to design the best architecture as per business
requirements. It explains about the various reference architectures in AWS cloud platform.

Chapter 7, Performance Considerations, provides an understanding of essential attributes of
application performance improvement such as latency, throughput, and concurrency. It
explains various technology choices to improve performance at multiple layers of
architecture, including compute, storage, database, and networking, along with
performance monitoring.

Chapter 8, Security Considerations, talks about the various design principles applicable to
securing your workload. Security needs to apply at every layer and to every component of
the architecture, and this chapter helps you to get an understanding of the right selection of
technology to ensure your architecture is secure at every layer. It explores the industry
compliance guidelines applicable to architecture design and explains security in the cloud
with a shared responsibility model.

[2]

Preface

Chapter 9, Architectural Reliability Considerations, talks about design principles to make
your architecture reliable. It explores various disaster recovery techniques to ensure high
availability of your application, and data replication methods for business process
continuations. It explains best practices and the role of the cloud in the application to
achieve reliability.

Chapter 10, Operational Excellence Considerations, talks about various processes and
methods for achieving operational excellence in applications. It explains best practices and
technology selections that apply throughout the phases of application design,
implementation, and post-production to improve application operability. It also explores
operational excellence for cloud workloads.

Chapter 11, Cost Considerations, talks about the various techniques for optimizing cost
without risking business agility. It explains multiple methods used to monitor cost and
apply governance for cost control. It helps you to understand cost optimization using the
cloud.

Chapter 12, DevOps and the Solution Architecture Framework, explains the importance of
DevOps in application deployment, testing, and security. It explores DevSecOps and its
role in the application's continuous deployment and delivery pipeline. It talks about
DevOps best practices and the tools and techniques to implement them.

Chapter 13, Data Engineering and Machine Learning, talks about how to design big data and
analytics architectures. It outlines the steps to create a big data pipeline, including data
ingestion, storage, processing, and visualization. It helps you to understand the concepts
and technology involved in IoT. It explores details about machine learning, model
evaluation techniques, and gives an overview of various machine learning algorithms.

Chapter 14, Architecting Legacy Systems, talks about the various challenges and
modernization drivers for legacy systems. It explains strategies and techniques to
modernize legacy systems. Use of the public cloud is becoming a go-to strategy for many
organizations, so this chapter also explores the cloud migration of legacy systems.

Chapter 15, Solution Architecture Document, talks about the solution architecture document
along with its structure and the various details required to accommodate the
documentation. It explores a variety of IT procurement documentation, where the solution
architect participates in providing feedback.

Chapter 16, Learning Soft Skills to Become a Better Solution Architect, talks about various soft
skills required for a solution architect to be successful in the role. It helps you to understand
methods to acquire strategic skills such as pre-sales and executive communication, develop
design thinking, and personal leadership skills such as thinking big and ownership. It
explores techniques to establish yourself as a leader and continue improving your skillset.

[3]

Preface

To get the most out of this book

Prior experience of software architecture design will help you to follow along with this
book. However, no specific prerequisites are required to understand this book. All the
examples and relevant instructions are provided throughout the various chapters. This
book takes you into the deep concepts underlying solution architecture design and does not
require knowledge of any particular programming language, framework, or tool.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781838645649_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "You can apply data encryption in transit and at rest. When you push into a code
repository (git push), it encrypts the data and then stores it. When you pull from a code
repository (git pull), it decrypts the data and then sends the data back to the caller."

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The Jenkin Master offload builds to the slave node instance in case of overload."

0 Warnings or important notes appear like this.

Tips and tricks appear like this.

[4]

https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645649_ColorImages.pdf

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[5]

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

The Meaning of Solution
Architecture

This book is your first step in the solution architecture world. Throughout this book, you
will learn all about solution architecture, and how to become a solution architect. In this
first chapter, let's understand the meaning of solution architecture. Solution architecture is
the building blocks of solution development in the organization. It helps to create a
successful solution in a complex organization, where product development has
dependencies on multiple groups.

For the success of application development, defining solution architecture should be the
first step, which then lays out the foundations and the robust building block of
implementation. Solution architecture not only considers the requirements of the business,
but also handles critical, non-functional requirements such as scalability, high availability,
maintainability, performance, security, and so on.

A solution architect is a person who is responsible for designing solution architecture by
collaborating across stakeholders. The solution architect analyzes the functional
requirement and defines a non-functional requirement in order to cover all aspects of the
solution and avoid any surprises. Each solution has multiple constraints such as cost,
budget, timeline, regulatory, and so on, and the solution architect considers them, while
also creating the design and making technology selection.

The solution architect develops a proof of concept and prototype in order to evaluate
various technology platforms, and then chooses the best strategy for solution
implementation. They mentor the team throughout solution development and provide
post-launch guidance to maintain and scale the final product.

The Meaning of Solution Architecture

Chapter 1

In this chapter, you will learn about the following topics:

What is solution architecture?

Evolution for solution architecture

Understanding the importance of solution architecture
The benefits of solution architecture

The workings of solution architecture in the public cloud

What is solution architecture?

If you ask around, there may be 10 different answers for the definition of solution
architecture, and they may all be correct, as per their organization's structure. Each

organization may see solution architecture from a different perspective, based on their
business needs, organizational hierarchy, and solution complexity.

In a nutshell, solution architecture defines and foresees multiple aspects of a business
solution, at both the strategic and tactical perspectives. Solution architecture is not just
about a software solution. It covers all aspects of a system, which will be included but not
limited to, system infrastructure, networking, security, compliance requirement, system
operation, cost, and reliability. As you can see, the following diagram provides a different

aspect that a solution architect can address:

Solution
mplementation

Global
Compliances

Business
Requirement

Technology
Selection

idget h\\\‘k—)

nfrastructure
Requirement

End User
Requirement

\'0

Solution
Architecture

Solution
laintenance

Project
Global
Teams

Timeline

Circle of solution architecture

[7]

The Meaning of Solution Architecture Chapter 1

As shown in the preceding diagram, a good solution architect addresses the most common
aspects of the solution in an organization:

¢ Globally distributed teams: In this age of globalization, almost every product
has users distributed across the globe, and stakeholder's groups to take care of
customer needs. Often, the software development team has an onshore-offshore
model, where a team works across different time zones to increase productivity
and optimize project cost. Solution design needs to consider a globally
distributed team structure.

¢ Global compliance requirement: When you are deploying your solution
globally, each country and region has its laws and compliance regime, which
your solution needs to adhere. Some examples are as follows:

¢ The Federal Risk and Authorization Management Program

(FedRAMP) and Department of Defense Cloud Computing

Security Requirements Guide (DoD SRG) for the USA

The General Data Protection Regulation (GDPR) for Europe

The Information Security Registered Assessors Program (IRAP)

for Australia

The Center for Financial Industry Information Systems (FISC)

for Japan

The Multi-Tier Cloud Security (MTCS) standard for Singapore

The G-Cloud for the UK

The IT-Grundschutz for Germany

The Multi-Level Protection Scheme (MLPS) Level 3 for China

Also, compliance requirements are different from industry to the
industry, for example, the International Organization for
Standardization (ISO) 9001 (which is primarily for healthcare, life
sciences, medical devices, and the automotive and aerospace
industries), the Payment Card Industry Data Security Standard
(PCI-DSS) for finance, the Health Insurance Portability and
Accountability Act (HIPPA) for healthcare, and so on. Solution
architecture needs to consider that compliance in the design phase.
You will learn more about compliance in chapter 8, Security
Considerations.

[8]

The Meaning of Solution Architecture Chapter 1

¢ Cost and budget: Solution architecture gives a good estimation of the overall cost
of the project, which helps to define a budget. This includes capital expenditure
(CapEx), which is the upfront cost and, operational expenditure (OpEx), which
is an ongoing cost. It helps management to create an overall budget for human
resources, infrastructure resources, and other licensing-related costs.

¢ Solution implementation component: Solution architecture provides a high-
level overview of different implementation components of the product
beforehand, which helps to plan execution.

¢ Business requirements: Solution architecture considers all business
requirements, which includes both functional and non-functional requirements.
It makes sure that business requirements are compatible, therefore allowing them
to be converted into the technical implementation stage and strike a balance
between stakeholders.

e IT infrastructure requirements: Solution architecture determines what kind of IT
infrastructure is required to execute the project, which includes computing,
storage, network, and so on. This helps to plan the IT resources more effectively.

e Technology selection: During solution design, a solution architect creates a
proof of concept and prototype, which considers the corporate requirements, and
then recommends the right technology and tools for implementation. Solution
architecture aims to build in-house versus third-party tool sourcing and define
software standards across the organization.

¢ End user requirements: Solution architecture pays special attention to the
requirements of the end user, who will be the actual consumer of the product. It
helps to discover the hidden requirements that a product owner may not be able
to capture, due to a lack of technicality. During implementation and launch,
solution architect provides a standard document and typical language structure
in order to make sure that all of the requirements have been met to satisfy the
user's needs.

¢ Solution maintenance: Solution architecture is not just about solution design and
implementation, but it also takes care of post-launch activities, such as solution
scalability, disaster recovery, operational excellence, and so on.

¢ Project timeline: Solution architecture designs the layout details of each
component with their complexity, which further helps to define the project
milestones and timeline by providing resource estimation and associated risks.

[9]

The Meaning of Solution Architecture Chapter 1

An industry-standard and well-defined solution architecture address all business
requirements in a technical solution, and they make sure to deliver the desired result in
order to satisfy the stakeholders, as per their expectations in terms of the quality,
availability, maintainability, and scalability of the solution.

The initial design of a solution architecture may be conceived at a very early stage during
the pre-sales cycle, such as the request for proposal (RFP) or the request for
information (RFI) and is followed by the creation of a prototype or proof of concept, in
order to discover any solution risk. Solution architect also identifies whether to build a
solution or to source it. It helps to identify technology selection, while also keeping an
organization's critical security and compliance requirements in mind.

There could be two primary situations for creating a solution architecture:

e First, enhancing technology for an existing application, which may include
hardware refresh or software re-architecting

e Second, to create a new solution from scratch, where you get more flexibility to
choose the best fit of technology to address a business requirement

However, while re-architecting the existing solution, you need to consider the minimal
impact and create a solution that can best fit the current environment. Solution architects
may decide to re-build if re-architecting the existing solution is not worth it, and a better
solution can be provided by a re-build approach.

In a more simplified language, solution architecture is about looking at all the aspects of the
system in order to generate a technical vision, which provides steps to implement the
business requirements. Solution architecture can define an implementation for a project or a
group of projects in a complex environment, by putting together all of the different pieces
that are related to data, infrastructure, networking, and software application. A good
solution architecture not only satisfies the functional and non-functional requirements, but
also addresses system scalabilities and maintenance in the long run.

We have just learned about an overview of solution architecture and its different aspects. In
the next section, we will look at the evolution of solution architecture.

[10]

The Meaning of Solution Architecture Chapter 1

Evolution of solution architecture

Solution architecture has evolved with technological modernization. Today, solution
architecture design has changed drastically compared to a couple of decades ago, due to the
increasing use of the internet, the availability of high-bandwidth network, the low cost of
storage, and computer availability.

Back in the days before the era of the internet, most solution designs focused on providing
a thick desktop client, which was capable of operating with low bandwidth and working
offline when a system could not connect to the internet.

This technology started evolving in the last decade. Service-oriented architecture (SOA)
started taking shape for distributed design, and applications started moving from
monolithic to modern n-tier architecture, where the frontend server, application server, and
database were live in their computer and the storage layer. These SOAs are mostly
achieved by an XML-based messaging protocol, called Simple Object Access Protocol
(SOAP). This majorly follows a client-server model in order to create services.

In this age of digitization, you will see microservice-based solution design becoming
increasingly popular, which is based on JavaScript Object Notation (JSON)-based
messaging and the Representational State Transfer (REST) service. These are Web APIs,
which do not require XML-based web service protocols (SOAPs) to support their interfaces.
They rely on web-based HTTP protocols such as POST, GET, UPDATE, DELETE, and so on.
You will learn more about different architecture patterns in great detail in chapter 6,
Solution Architecture Design Patterns.

The microservice architecture addresses the need for changing requirements in an agile
environment, where any solution changes need to be accommodated and deployed rapidly.
Organizations have to be agile to stay ahead of the competition. This forces solution
architecture to be flexible, compared to the waterfall model, where you have a long cycle of
project release.

The web-based microservice architecture is fueled by an almost unlimited resource
capability, which is available from cloud providers and which can scale in minutes or
seconds. It's becoming easier to innovate, experiment, and change as solution architects and
developers can risk failing without harming anything.

[11]

The Meaning of Solution Architecture Chapter 1

Why is solution architecture important?

Solution architecture is the building block for an overall enterprise software solution that
addresses specific problems and requirements. As the project size increases, the team
becomes distributed globally. It is required to have a solution architecture in place for long-
term sustainability and a solid foundation.

Solution architecture addresses various solution needs, keeping the business context intact.
It specifies and documents technology platforms, application components, data
requirements, resource requirements, and many important non-functional requirements
such as scalability, reliability, performance, throughput, availability, security, and
maintainability.

Solution architecture is vital for any industry and its solution. In the absence of solution
architecture, there is a chance that software development could fail; projects can get
delayed, get over budget, and not deliver enough functionalities. This scenario can be
drastically improved by creating a solution architecture and applying experience and
knowledge; all of which are provided by a solution architect. It helps to keep stakeholders
from all areas — from non-technical business functions to technical development — on the
same page, which avoids confusion, keeps the project on track within schedule and time,
and helps to derive maximum return on investment(ROI).

Often, the solution architect requires customer collaboration in order to understand
specifications. In a solution architect's role, the architect needs multiple skillsets from
technical leaders and experts, to business analysts and project management. We will learn
more about the solution architect's role in chapter 2, Solution Architects in an Organization.

A good solution architecture puts specifications in place with a well-defined solution,
which helps us to deliver and accomplish the final product, along with smooth product
operability after launch. A single problem can have multiple solutions, and each solution
has its constraints. Solution architecture considers all the solutions, and finds the best way,
by creating a hands-on proof of concept that accommodates all of the business and
technical limitations.

[12]

The Meaning of Solution Architecture Chapter 1

The benefits of solution architecture

The previous section sheds light on the importance of solution architecture. This section
will further explore and provide more details on the benefits of solution architecture in
various aspects of an organization, as shown in the following solution architecture benefits

diagram:

Y
Market Opportunity

Project Timeline Budget Resourcing
Technology Values & Business Target
Goal Dates

Requirement

Increased Market Opportunity
ROI

A solution architecture's beneficial attributes

The preceding diagram highlights the following attributes of a good solution architecture:

¢ Technology value and requirement: Solution architecture determines the return
on investment, which solution can be obtained by a particular technology
selection, and the market trend. The solution architect evaluates which
technology an organization or project should adopt in order to achieve long-term
sustainability, maintainability, and team comfort.

¢ Business goal: The primary responsibility of a solution architecture design is to
accommodate the needs of the stakeholders and adapt change in their
requirements. Solution architecture converts business goals into a technical
vision by analyzing market trends and implementing the best practice. Solution
architecture needs to be flexible enough to meet new, challenging, demanding,
and rapidly changing business requirements.

[13]

The Meaning of Solution Architecture Chapter 1

e Target date: A solution architect continuously works with all stakeholders,
including the business team, customer, and development team. A solution
architect defines the process standard and provides guidelines for solution
development. He/she makes sure that the overall solution is in alignment with
the business objective and launch timeline, to ensure minimal chances of target
date slippage.

¢ Increased Return on Investment (ROI): Solution architecture determines the
ROI and help to measure the success of the project. Solution architecture forces
businesses to think about how to reduce costs and remove waste in the process,
in order to improve the overall ROI.

e Market opportunity: Solution architecture involves the process of analyzing and
continuously evaluating the latest trends in the market. It also helps with backing
up and promoting new products.

¢ Budget and resourcing: For a better budget, it is always recommended to invest
well in estimation. A well-defined solution architecture helps to understand the
number of resources that are required for project completion. This helps with a
better budget forecast and resource planning.

¢ Project timeline: Defining an accurate project timeline is very critical for solution
implementation. A solution architect determines the resources and effort that are
required during the design phase, which should help define the schedule.

Now, you have had a high-level overview of solution architecture and its benefits. Let's
dive deep into the everyday aspects of solution architecture.

Addressing the business needs and quality of
delivery

In the life cycle of product development, the most challenging phase is to establish the
nature of the requirements, especially when all the elements need to be addressed as high
priority, and they keep changing rapidly. This challenge is even worse when there are
different views of the same requirement from various stakeholders. For example, a business
user analyzes the page design from a user point of view, while a developer is looking at it
from implementation feasibility and load latency perspectives. This can cause conflicts and
misunderstandings of requirements between functional and technical members. In such
cases, solution architecture helps to bridge the gap, and define a standard that all members
can understand.

[14]

The Meaning of Solution Architecture Chapter 1

Solution architecture defines standard documentation, which can explain the technical
aspects to non-technical stakeholders and update them regularly. As a solution
architecture's design spans across the organization and different teams, it can help to
discover hidden requirements. The solution architect makes sure that the development
team knows about the requirements, and also maintains the cycle of progress.

A good solution architecture defines not only the solution design, but also the success
criteria in the form of qualitative and quantitative output, in order to ensure the quality of
delivery. The qualitative output can be collected from user feedback, such as their
sentiment analysis, while quantitative output may include latency, performance, load time
at the technical side, and sales numbers at the business side. Taking continuous feedback
and adapting to it is the key to high-quality delivery, which should adhere to all the phases
of solution design and development.

Selecting the best technology platform

In a rapid and competitive market, the biggest challenge is maintaining the use of the best
technologies. Today, when you have multiple resources all around the world, then you
have to choose a technology very carefully. The solution architecture design process can
effectively tackle this problem.

The selection of the technology stack plays a significant role in efficient solution
implementation by the team. In solution architecture, we should use different strategies to
adopt various platforms, technologies, and tools. A solution architect should validate all of
the needs carefully, and then evaluate and investigate the result with multiple parameters
in order to find the best-fit solution for the product development, by creating a working
model of the product as a prototype.

A good solution architecture addresses the depth of different tools and technologies by
investigating all possible architectural strategies, based on the mixed-use case, techniques,
tools, and code reuse, which comes from years of experience. The best platform simplifies
the implementation process; however, the right technology selection is very critical. This
can be achieved by building a prototype according to the business requirement assessment,
and the agility, speed, and security of the application.

[15]

The Meaning of Solution Architecture Chapter 1

Addressing solution constraints and issues

Any solution can be limited by various constraints and may encounter issues due to
complexities or unforeseen risks. Solution architecture needs to balance multiple
constraints, such as resources, technologies, cost, quality, time to market, frequently
changing requirements, and so on.

Each project has its own specific goal, requirement, budget, and timeline. Solution
architecture evaluates all of the possible critical paths and shares best practices to achieve a
project goal in a given timeframe and budget. This is a systematic approach, where all tasks
are interdependent of its prior task, and in order to achieve success in the project, all tasks
need to execute in sequence. A delay in one task can impact the project timeline and can
result in the organization losing the market window to launch the product.

If there is an issue in the project development process, the probability of a project getting
delayed is higher. Sometimes, you encounter problems that are limitations of technology or
of the solution environment. If you have a well-thought-out solution architecture, the most
common issues are related to the non-functional requirements; resources and budgeting
can mitigate for the product development life cycle.

A solution architect helps to drive the project by diving deep into each component of the
project. They think of an out-of-the-box idea to save the project from the issues, and they
will prepare a backup plan in the event that things do not work out as in the main plan.
They evaluate the best possible way to execute the project by choosing the best practice and
balancing constraints.

Helping in resource and cost management

There are always risks and uncertainties involved during solution implementation. It's very
tedious to understand how much time a developer will spend on fixing a bug. A good
solution architecture controls the cost and budget and reduces uncertainty by providing
developers with the required guidance in terms of priority, different communication
services, and details of each component.

Solution architecture also creates documentation for keeping the system up to date, a
deployment diagram, software patches, version; and enforces the runbook to solve frequent
issues and business continuation processes. It also addresses the indirect impacts of the cost
of building a solution by considering extensibility, scalability, and other external factors
that matter to the development environment.

[16]

The Meaning of Solution Architecture Chapter 1

Managing solution delivery and project life cycle

Lots of planning is involved in the inception stage of solution architecture. Solution
architecture starts with a strategic view and provides more technical implementation input
as you move forward with the solution implementation.

Solution architecture ensures an end-to-end solution delivery and impacts the overall
project life cycle. It defines a process standard for different phases of the project life cycle
and makes sure that it is applied across the organization so that other dependencies can be
addressed as the implementation moves forward.

Solution architecture considers a holistic view of the project. It keeps syncing other
dependent groups such as security, compliance, infrastructure, project management, and
support, in order to keep them engaged in different phases of the project life cycle as
required.

Addressing non-functional requirements

Often, you have to deal with the non-functional requirements (NFRs) in your application.
For project success, it is highly essential to address them, as they have a broader impact on
the overall project and solution. These NFRs can make or break your user base, and address
very critical aspects of a solution such as security, availability, latency concerns,
maintenance, logging, masking confidential information, performance concerns, reliability,
maintainability, scalability, usability, and so on. If these are not considered on time, it can
impact your project delivery.

The following diagram shows some of the most common NFRs:

[17]

The Meaning of Solution Architecture Chapter 1

Disaster
recovery

Security &
compliance

Non- functional High
requirements availability

Scalability

Application
performance

Network &
request

response
latency

Non-functional attributes of solution architecture

As shown, NFRs include the following attributes of solution architecture. However, there
can be more NFRs, depending upon the project:

¢ Disaster recovery: To make sure the solution is up and running in case of any
unforeseen events.

¢ Security and compliance: Put a safety net in place for a solution to save it from
an external attack, such as a virus, malware, and so on. Also make sure that the
solution complies with local and industry laws, by meeting compliance
requirements.

¢ High availability: To make sure the solution is always up and running.

[18]

The Meaning of Solution Architecture Chapter 1

¢ Scalability: To make sure the solution can handle the additional load in case of
increasing demands.

e Application performance: To make sure the application is loading as per user
expectation, and without much delay.

¢ Network request and response latency: Any activity performing on the
application should be completed within the appropriate time and should not
time out.

You will learn more details about the preceding attributes in chapter 3, Attributes of the
Solution Architecture. Solution architecture defines an initial framework for product
development and the building blocks of the solution. While establishing a solution,
architecture, quality, and customer satisfaction are always the main focus. Solution
architecture needs to build continuously by working on a proof of concept and keep
exploring and testing until the desired quality is reached.

Solution architecture in the public cloud

Solution architecture in the cloud has become increasingly important these days, and it is
the future of application solutions. The great thing about cloud computing architecture is
that you have an end-to-end view of all architecture components, which include the
frontend platforms, the application development platform, servers, storage, database,
automation, delivery, and the networks that are required to manage the entire solution
landscape.

Before jumping into solution architecture in the cloud, let's understand more about the
public cloud, and how it is becoming a more essential and driving technology platform.

What is the public cloud?

A public cloud is a base on the standard computing model in which a service provider
makes resources such as virtual machines, applications, storage, and so on, available to
their customers over the internet. Public cloud services offer a pay-as-you-go model.

In the cloud computing model, a public cloud vendor provides on-demand availability of
IT resources such as the server, database, network, storage, and so on, which organizations
can use with secure web-based interfaces, or through application programs over the
internet. In most of the cases, the customer only pays for the services that they are applying
for the duration of utilization, which saves costs for them by optimizing IT resources to
reduce idle time.

[19]

The Meaning of Solution Architecture Chapter 1

You can annotate the public cloud with an electric power supply model, where you switch
on the light and pay only for the amount of electricity you use in units. As soon as you
switch off, you are not paying for it. It abstracts you from the complexity of power
generation using turbines, resources to maintain the facility, a large infrastructure setup,
and you use the entire service in a simplified way.

Public clouds, private clouds, and hybrid clouds

Here, you will learn about a high-level overview of the different types of cloud computing
deployment models. You will learn more details in chapter 5, Cloud Migration and Hybrid
Cloud Architecture Design.

A private cloud, or on-premises, is registered to a single organization that owns and
accesses it. Private clouds act as a replicate or extension of the company's existing data
center. Often, a public cloud has shared tenancy, which means virtual servers from
multiple customers share the same physical server; however, they offer dedicated physical
servers to customers if the customer wants it for a license or compliance need. A public
cloud such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud

Platform (GCP) creates a massive IT infrastructure, which can be utilized over the internet
with a pay-as-you-go model.

A third model is a hybrid cloud, used by large enterprises who are moving their workload
from on-premises to a cloud, where they still have a legacy application that cannot move to
the cloud directly, or maybe they have a licensed application that needs to stay on-
premises, or sometimes due to compliance reasons, they need to secure data on-premises.
In such a situation, the hybrid model helps, where the enterprise has to maintain a partial
environment on-premises and move other applications to the public cloud. Sometimes an
organization moves to test and develop the environment to the public cloud and keep
production environments on-premises. A hybrid model can vary depending upon the
organization's cloud strategy.

[20]

The Meaning of Solution Architecture Chapter 1

The public cloud architecture

In a typical definition, the public cloud is a fully virtualized environment, which is
accessible both over the internet or private network lines. However, in recent times, public
cloud vendors also started offering an on-premises physical infrastructure for better hybrid
cloud adoption. The public cloud provides a multi-tenancy model, where IT infrastructure
such as storage and compute are shared between multiple customers; however, they are
isolated at the software and logical network levels, and do not interfere with each other's
workload. In the public cloud, by creating network-level isolation, organizations can have
their virtual private cloud, which is equivalent to the logical data center.

Public cloud storage achieves high durability and availability, by creating a redundancy
model using multiple data centers, and robust data replication. This makes them achieve
architecture resiliency and easy scalability.

There are three major types of cloud computing model, as shown here:

Infrastructure as a Service Platform as a Service Software as a Service
On-Premise (1aas) (Paas) (Saas)
Application and Data Application and Data Application and Data ‘ Application and Data
Operating System and Operating System and Operating System and Operating System and
Run-time Environment Run-time Environment ‘ Run-time Environment ‘ Run-time Environment

Server and Virtualization ‘ Server and Virtualization ‘ Server and Virtualization ‘ Server and Virtualization

Storage

Storage ‘ Storage

Network ‘ Network

‘ Network

- Gustomer Responsbility | Vender Provided

Type of cloud computing model

[21]

The Meaning of Solution Architecture Chapter 1

As shown in the diagram, you can see a comparison between customer responsibilities in
the on-premises environment with the cloud computing service model. In on-premises, the
customer has to manage everything, while in the cloud computing model, customers can
offload responsibilities to the vendor and focus on their business needs. The following
points are high-level details of services that are provided under different cloud computing
models:

e Infrastructure as a Service (IaaS): In the IaaS model, a vendor provides
infrastructure resources such as a compute server, networking components, and
data storage space as managed services. It helps customers to use IT resources
without worrying about handling data center overheads such as heating and
cooling, racking and stacking, physical security, and so on.

e Platform as a Service (PaaS): The PaaS model adds a layer of service, where the
vendor takes care of the resources that are required for your development
platform, such as the operating system, software maintenance, patching, and so
on, along with infrastructure resources. The PaaS model facilitates your team's
focus on writing business logic and handle data, by taking care of all of the
platform maintenance burdens for you.

e Software as a Service (SaaS): The SaaS model adds one more layer of abstraction
on top of the PaaS and IaaS models, where the vendor provides ready-to-use
software, and you pay for the service. For example, you use email services such
as Gmail, Yahoo! Mail, AOL, and so on, where you get your own space of email
as a service, and you don't have to worry about underlying applications or
infrastructures.

The fourth emerging model is the Function as a Service (FaaS) model, which is becoming
popular in the building of serverless architecture using services including AWS Lambda.
You will learn more details about serverless architecture in Chapter 6, Solution Architecture
Design Patterns.

Public cloud providers and cloud service offering

There are several public cloud providers in the IT industries; among them, key players are
AWS, GCP, Microsoft Azure, and Alibaba Cloud. These providers offer an array of services,
from computing, storage, networking, databases, and application development, to big data
analytics and AI/ML, and so on.

[22]

The Meaning of Solution Architecture Chapter 1

In the following screenshot from the AWS console, you can see 100+ services that are
offered in multiple areas. The highlighted EC2 service, known as Amazon Elastic Cloud
Compute, allows you to spin-up the virtual machine in minutes in the AWS cloud:

L Nvirginla v Suppart >

AWS services Featured next steps
Find a service by name (for example, EC2, S3, Elastic Beanstalk) @ [%11, Manage your costs
Get real-time biling alerts basad on your cost and
v A senices usage budgats, Start now
@ Computs €F Developer Tools ¢y intemet of Things
EG2 CodeCommit AWS loT E| Get best practices
ica DTIQIW Code :’w Use AWS Trustod Adhisor for security, pedormance,
ghtsal CodeDel £ G cost and mailability best practices. Star now
Elastic Beanstalk GodePipeline & Game Development
Lambaa X-Ray Amazon GameLift
Batch
F] Management Tools] Mobia Servces What's new?
E Storage CloudWatch Mobile Hub)
53 CloudFormation Cognito Announcing AWS Batch
EFS CloudTrail Device Farm Mow ganerally avalable, AWS Batch enables developers, scientists,
Glasier Config Mobile Analytics and enginaers o procoss large-scale batch jobs with sase. Lsam
Pinpaint more
Storage Gateway OpsWorks
Senvice Catalog
] Deatabase Trusted Advisor P Appication Servces Announcing Amazon Lightsail
. ADS Managed Services Step Functions See how this new service allows you to launch and manage your
DynamoDB SWF VPS with AWS for & low, pradictable price. Leam mans
ElastiCache § Socurty, identity & AP| Gateway
Redshift Comgliance: Elastic Transcoder See al
1AM
I
b wgsone L) e
Delivery orect “‘ Simple Queue Service AWS Marketpiace
wPC WAF ::hiﬂd Simple Notiticaion Service Discaver, procure, 8nd deploy populsr software products that i
SES s
CloudFront Compliance Reports on AWS.
Direct Connect
Floute 53 -
df) Anaiytcs £ iiﬁpmmw Have feedback?
Athena Submit feedback to tell us about your experience with the AWS
& Migaton i WorkMall _ Management Conscle.
Application Discovery Service F— Amazon Chime
DMS) Blasticsearch Service
Server Migration Kinesis] Deskiop & App Streaming
Snowbal Data Plpeline WorkSpaces
QuickSight AppStream 2.0
@ Atificial Inteligence
Lex
Paly
FRekognition
Machine Learning

AWS console and service offerings

Public cloud vendors not only provide infrastructure, but also facilitate an array of services
in various areas such as analytics, big data, artificial intelligence, application development,
email, security, monitoring, alert, and so on. With the public cloud, different technical
capabilities become more accessible to the development team, which helps to drive
innovation and reduce the time to market for the product launch.

[23]

The Meaning of Solution Architecture Chapter 1

Summary

In this chapter, you learned about the definition of solution architecture from both the
industry standards and in a more simplified way. You learned the importance of solution
architecture, and how it can help the organization to achieve a more significant result and
maximize the return on its investments. This chapter helped you to understand the benefits
of having a solution architecture, and how it helps in different aspects of solution design
and implementation.

In summary, solution architecture is a building block in a complex organization and is used
to address all stakeholder's needs and establish a standard in order to fill the gap between
business requirements and technical solutions. A good solution architecture not only
addresses functional requirements but also puts long-term thought into, and takes care of,
non-functional requirements such as scalability, performance, resiliency, high availability,
disaster recovery, and so on. Solution architecture finds an optimal solution to
accommodate the constraints of cost, resources, timelines, security, and compliance.

Later in the chapter, you learned about the basics of cloud computing, solution architecture
in the cloud environment, and about significant public cloud providers and their service
offerings. This also helped you to gain a high-level overview of different cloud computing
models, such as laaS, PaaS, SaaS, and the cloud computing deployment models in the
public cloud, private cloud, and hybrid cloud. Finally, this chapter sheld some light on the
evolution of solution architecture design.

In the next chapter, you will learn all about the solution architecture role — the different
types of solution architect, the role's responsibilities as regards solution architecture, and
how they fit into an organizational structure and an agile environment.

[24]

Solution Architects in an
Organization

A solution architect understands the needs and goals of an organization. Often, solution
architects work for the organization as part of a team. All stakeholders, processes, teams,
and organization management affect solution architect roles and their work. In this chapter,
you will learn and understand the solution architect role and how solution architects fit
within the organization. Following that, you will learn about the various types of solution
architect and how they coexist in an organization. You may need a generalist solution
architect and other specialist solution architects, depending on your project's complexity.

This chapter will provide details on the solution architect's responsibility and how it can
impact an organization's success. A solution architect wears multiple hats and business
executives heavily depend on their experience and decision-making to understand their
technical vision.

The solution-and-software development methodology has evolved over the last few
decades, from waterfall to agile environment, which a solution architect needs to adopt.
This chapter will provide details about the Agile methodology and the iterative approach
that a solution architect should take for the continuous improvement of solution delivery.
Overall, agile thinking is very important for a solution architect.

Solution Architects in an Organization Chapter 2

In addition to solution design, solution architects need to handle various constraints to
evaluate risk and plan risk mitigation. Also, quality management plays a significant role,
which shouldn't be overlooked. The solution architect plays an essential role throughout
the solution's life cycle (from requirement collection, solution design, and solution
implementation to testing and launch).

A solution architect needs to engage regularly post-launch to ensure the scalability, high
availability, and maintainability of the solution. For broader consumer products, the
solution architect also needs to work with the sales team as a technology evangelist of the
product through content publishing and public speaking in various forums.

In this chapter, you will learn about the following topics:

e Types of solution architect role
e Solution architect responsibilities
e Solution architects in an agile organization

Types of solution architect role

In the previous chapter, you learned about solution architecture and how various
stakeholders impact solution strategies. Now, let's understand the solution architect's role.
The software solution can develop without a solution architect, depending on the project's
size, but for a large project, it is a requirement to have a dedicated solution architect. The
success and failure of the plan depends on the solution architect.

There is always a need for someone who can make architectural decisions for the team and
drive team collaboration with stakeholders. Sometimes, it is required to have multiple
solution architects in the team, depending on the size of the project.

The different types of solution architects are depicted in the following diagram, showing
how they have different self-differentiating responsibilities in the organization:

[26]

Solution Architects in an Organization Chapter 2

- - N

Generalist Architect Specialist Architect

4

Types of solution architect

y

As shown in the preceding diagram, an organization can have multiple types of solution
architects. Solution architect can be categorized as generalists or specialists. Generalist
solution architects have the breadth that comes from multiple technical domains. Specialist
solution architects have very in-depth knowledge in their area of expertise, such as big
data, security, and networking. A generalist solution architect needs to collaborate with a
specialist solution architect, to align with project's requirements and complexity.

[27]

Solution Architects in an Organization Chapter 2

The role of a solution architect varies from organization to organization and you may
encounter a variety of job titles related to solution architect, the most common being
generalist solution architect roles. Their focuses are as follows:

¢ Enterprise solution architect:
¢ Organization strategy

e Business architecture

Solution architect:
¢ Solution design

e Solution integration

Technical architect:
e Software design

e Software development

Cloud architect:
¢ Cloud strategy

¢ Cloud migration

Architect evangelist:
e Platform adoption

e Technical content

There may be other titles (such as application architect and software architect); however,
this depends on the organization's structure.

Specialist solution architect roles are as follows:

¢ Infrastructure architect:
e IT infrastructure design

¢ Software standardization and patching
e Network architect:

e Network design

e IT network strategy and latency
e Data architect:

¢ Data engineering and analysis

¢ Data science and data intelligence

[28]

Solution Architects in an Organization Chapter 2

e Security architect:
e Cyber security

o IT compliance

¢ DevOps architect:
e IT automation

¢ Continuous integration and continuous deployment (CI/CD)

There may be other types of specialist solution architect, such as migration architect and
storage architect. This, again, depends on the organization's structure. As per the project
and organizational complexity, a solution architect can take on multiple roles or different
solution architects can have overlapping responsibilities. You will learn more about each
architect role in subsequent sections.

Enterprise solution architect

Do you ever think about how products launch in the information technology industry? This
is where the enterprise solution role comes into the picture — they define best practices,
culture, and suitable technologies. An enterprise architect works closely with stakeholders,
subject matter experts, and management to identify organizational strategies for
information technology and make sure that their knowledge aligns with company business
rules.

Enterprise architects handle solution design across the organization; they create long-term
plans and solutions with stockholders and leadership. One of the most important aspects is
to finalize which technologies should be used by the company and making sure the
company is using these technologies with consistency and integrity.

Another important aspect of the enterprise architect is defining the business architecture. In
some organizations, you may see a business architect as the job title. Business architecture
fills the gap between organizational strategy and its successful execution. It helps convert a
map strategy into executable action items and takes this to a tactical level for
implementation.

Overall, enterprise architects are more aligned with company visions and responsibilities
when it comes to defining organization-wide standards for the successful implementation
of the business' vision.

[29]

Solution Architects in an Organization Chapter 2

Solution architect

In general, this book explores the role of a solution architect in a more generic way. Still,
you often see solution architects with different titles, as per the organization's structure, for
example, enterprise solution architect, software architect, or technical architect. In this
section, you will find some distinct attributes related to the various titles. However, the
responsibilities of the solution architect overlap, depending on an organization's structure.

If you wish to know how a solution should be organized and delivered, then a solution
architect plays an essential role in this context. A solution architect designs the overall
system and how different systems integrate across different groups. A solution architect
defines the expected outcome by working with business stakeholders and providing a clear
understanding of the delivery objective on the part of the technical team.

The solution architect connects the dots across the organization and ensures consistency
within different teams to avoid any last-minute surprises. The solution architect engages
throughout the project life cycle and also defines monitoring and alerting mechanisms to
ensure smooth operations after a product's launch. The solution architect also plays an
essential role in project management by providing advice regarding resource, cost, and
timeline estimation.

Overall, the solution architect gets to engage on a more tactical level compared to the
enterprise architect. Sometimes, the solution architect takes on the role of an enterprise
architect if a more strategic involvement is required.

Technical architect

A technical architect can also be called application architect or software architect. A
technical architect is responsible for software design and development. The technical
architect works with the organization in terms of engineering and is more focused on
defining technical details for software development by a team. They also work across the
organization to understand how integration will work alongside other parts of the software
module, which may be managed by other groups.

A technical architect can manage the details of API design and define API performance and
scaling aspects. They make sure that the software is being developed consistently with the
organization's standards and that they can easily integrate with another component.

[30]

Solution Architects in an Organization Chapter 2

The technical architect is a point of contact for any technical question related to the
engineering team and will have the ability to troubleshoot the system as required. For a
small software development project, you may not see a technical architect role, as a senior
engineer may take up that role and work on software architecture design.

The technical architect mentors and supports the software engineering team by working
closely with them and resolving any hindrance that arises from cross-team integration or
business requirements.

Cloud architect

The cloud architect role may not have been in existence within the last decade, but as cloud
adoption is increasing among enterprises this is one role that is in high demand in the
current scenario. The cloud architect plans and designs the cloud environment and is
responsible for deploying and managing the company's cloud computing strategies. Cloud
architects provide breadth and depth for cloud services and can define the cloud-native
design.

As you learned in the Solution architecture in the public cloud section in Chapter 1, The
Meaning of Solution Architecture, using the cloud is now the current trend and it has become
the norm for organizations to move onto a public cloud. Major cloud providers such as
Amazon Web Service, Microsoft Azure, and Google Cloud Platform are helping customers
to adopt cloud platforms at exponential speed with Software as a Service (SaaS), Platform
as a Service (PaaS), and Infrastructure as a Service (IaaS) offerings. You will learn more
about cloud architectures in chapter 5, Cloud Migration and Hybrid Cloud Architecture
Design.

There are a large number of enterprises that have an existing workload that they want to
migrate into the cloud to utilize scalability, ease of business, and price benefits. A cloud
architect can prepare a cloud migration strategy and develop a hybrid cloud architecture. A
cloud architect can advise how on-premise applications will connect to the cloud and how
different traditional offerings fit into a cloud environment.

For startup businesses and enterprises starting in the cloud, a cloud architect can help to
design a cloud-native architecture, which is more optimized for the cloud and uses the full
capabilities it provides. The cloud-native architecture tends to be built on pay-as-you-go
models to optimize cost and leverage automation available in the cloud.

Cloud is now an essential part of enterprise strategy, and a cloud architect is a must-have
role of companies want to succeed in the modern era by increasing the pace of innovation
and automation.

[31]

Solution Architects in an Organization Chapter 2

Architect evangelist

An architect evangelist is also known as a technology evangelist, and this is a
comparatively new role. This is a new paradigm in marketing, especially when you want to
increase the adoption of complex solution platforms. People will always want to hear from
an expert who has in-depth knowledge and the ability to answer their queries so that they
can make an informed decision. Here, architect evangelists come into the picture as they
work as a subject matter expert in a competitive environment.

An architect evangelist can design the architecture based on customer requirements, which
resolves the customer's pain points, and results in the customer wins. The evangelist can be
a trusted advisor for customers and partners. The architect evangelist has a deep
understanding of architectural issues, concepts, and market trends to help secure platform
adoption and show revenue growth through market capture.

To increase platform adoption for the overall target audience, the architect evangelist writes
public content such as blogs, whitepapers, and articles. They speak on public platforms
such as industry summits, technical talks, and conferences. They conduct technical
workshops and publish tutorials to spread the word about the platform. This makes it very
important for a solution architect to have excellent written and verbal communication
skills, as you will often see solution architects taking technology evangelism as an
additional responsibility.

Infrastructure architect

An infrastructure architect is a specialist architect role heavily focused on enterprise IT
infrastructure design, security, and data center operation. They work closely with solution
architects to make sure that the organization's infrastructure strategy is aligned with its
overall business requirements, and they plan an appropriate resource capacity to fulfill this
need by analyzing system requirements and the existing environment. They help reduce
capital expenditure that could be utilized for operational spending to increase
organizational efficiency and ROL

The infrastructure architect is the backbone of the organization since they define and plan
overall IT resources, from storage servers to individual workspaces. The infrastructure
architect creates detailed plans for procuring and setting up IT infrastructures. They define
software standards, software patching, and software update plan systems across an
organization. The infrastructure architect handles infrastructure security and makes sure all
environments are protected from unwanted virus attacks. They also plan for disaster
recovery and system backups to make sure business operations are always running.

[32]

Solution Architects in an Organization Chapter 2

In most e-commerce businesses, infrastructure architect jobs become challenging as they
need to plan for the peak season such as Thanksgiving in USA, Boxing Day in Canada and
UK, Diwali in India and so on, when most consumers start shopping. They need to prepare
enough server and storage capacity to accommodate the peak season, whose workload may
be 10 times higher than normal, thus increasing the cost. A system will be sitting idle for
most of the year, outside of the peak season. They need to plan for cost optimization and
better user experience at the same time, which is another reason they may use the cloud to
fulfill additional capacity and scale on-demand to reduce the cost. They need to ensure that
systems are occupied while supporting the growth of the new expertise.

Overall, an infrastructure architect needs to have a good understanding of data center
operation and the components involved, such as heating, cooling, security, racking and
stacking, server, storage, backup, software installation and patching, load balancers, and
virtualization.

Network architect

Have you ever wondered how giant enterprises with multiple locations for offices or stores
are connected? Here, the network architect comes into the picture, as they orchestrate an
organization's network communication strategy and establish communication between IT
resources, giving life to the IT infrastructure.

A network architect is responsible for designing the computer network, Local Area
Network (LAN), Wide Area Network (WAN), internet, intranet, and other communication
systems. They manage organizational information and network systems. They ensure low
network latency and high network performance is available for users to increase their
productivity. They establish secure connectivity between user workspaces and the internal
network using Virtual Private Network (VPN) connectivity.

The network architect works closely with the infrastructure architect and sometimes you
see this as an overlapping role to ensure all IT infrastructures are connected. They work
with the security team and design the organization's firewall to protect against unethical
attacks. They are responsible for monitoring and protecting the network via packet
monitoring, port scanning, and putting Intrusion Detection System (IDS) and Intrusion
Prevention System (IPS) into place. You will learn more about IDS/IPS systems in Chapter
8, Security Considerations.

Overall, a network architect needs to have a good understanding of network strategies,
network operations, secure connections using VPN, firewall configuration, network
topology, load balance configuration, DNS routing, IT infrastructure connectivity, and so
on.

[33]

Solution Architects in an Organization Chapter 2

Data architect

Any solution design revolves around data, and it is mostly about storing, updating, and
accessing it regardless of whether it is about customers or products. As the adoption of the
internet is increasing, so are data and the need for data architects. In the last decade, data
growth has risen exponentially — not long ago, gigabytes of data were considered to be big
data, but now even 100 terabytes of data are deemed to be normal. You can even get a 1-
terabyte computer hard disk.

Traditionally, data used to be stored in a structured relational way. Now, most data are in

an unstructured format generated from resources such as social media, Internet of Things
(IoT), and application logs. There is a need to store, process, and analyze data to get useful
insights, where the data architect role comes into the picture.

The data architect defines a set of rules, policies, standards, and models that govern the
type of data that's used and collected in the organization database. They design, create, and
manage the data architecture in an organization. A data architect develops data models and
data lake designs to capture business's key performance indicators (KPIs) and enable data
transformation. They ensure consistent data performance and data quality across the
organization.

The primary customers for a data architect are as follows:

¢ Business executives using Business Intelligence (BI) tools for data visualization
¢ Business analysts using a data warehouse to get more data insight

¢ Data engineers performing data wrangling using Extract, Transform, and Load
(ETL) jobs

e Data scientists for machine learning
¢ Development teams for application data management

To fulfill organizational needs, the data architect is responsible for the following:

e Selection of database technology

¢ A relational database schema for application development
¢ Data warehousing for data analysis and BI tools

¢ Data lake as the centralized datastore

e Datamart design

¢ Machine learning tools

e Data security and encryption

e Data compliance

[34]

Solution Architects in an Organization Chapter 2

You will learn more about data architectures in chapter 13, Data Engineering and Machine
Learning. Overall, the data architect needs to be aware of different database technologies, Bl
tools, data security, and encryption to make the right selection.

Security architect

Security should be the top priority for any organization. There are multiple instances when
large and well-established organizations went out of business due to a security breach.
Organizations not only lose customer trust but also experience legal complications due to
security incidents. There are various industry compliance certifications, such

as Organizational Security (SOC2), Finance Data (PCI), and HealthCare data (HIPPA),
that are in place to ensure organization and customer data security, which a company
needs to adhere to as per the nature of their application.

Looking at the critical nature of security, organizations need to research and design the
most robust security architecture for their projects, and that's where a security architect is
necessary. A security architect works closely with all groups and solution architects to
make sure security is a high priority. A security architect's responsibilities include the
following;:

¢ Designing and deploying the implementation of the network and computer
security in the organization.

¢ Understanding the company's technology, and information systems, and
safeguarding the security of the computers in the organization.

e Working with a variety of settings, such as securing company networks and
websites.

¢ Planning vulnerability testing, risk analysis, and security audits.

¢ Reviewing and approving the installation of a firewall, VPN, and router, and
scanning the server.

¢ Testing final security processes and making sure they work as expected.

¢ Providing technical guidance to the security teams.

e Making sure applications comply with industry standards as required.

¢ Making sure data is secure with the required accessibility and encryption.

Security architects are expected to understand, design, and guide all aspects of security
related to data, network, infrastructure, and applications with a variety of tools and
techniques. You will learn more about security and compliance in Chapter 8, Security
Considerations.

[35]

Solution Architects in an Organization Chapter 2

DevOps architect

As a system gets complex, there are more chances of human error, which can lead to
additional effort being needed, increased cost, and reduced quality. Automation is the best
way to avoid failure and improve overall system efficiency. Now automation is not an
optional choice—if you want to be agile and move faster, automation is a must.

Automation can be applied anywhere, whether it is testing and deploying applications,

spinning up infrastructure, and even ensuring security. Automation plays a critical role,
and a DevOps architect automates everything everywhere. DevOps is a combination of

practices and tools that assist in delivering an application at a faster pace.

It allows the organization to serve its customers better and stay ahead of the competition. In
DevOps, model- development team and operational teamwork together in sync. For a
software application, a DevOps architect defines continuous integration and continuous
delivery (CI/CD). In CI, automated builds and test runs happen before the development
team merges its code changes into a central repository. CD expands upon continuous
integration by deploying all code changes to a production environment after the build and
test stage.

The DevOps architect automates infrastructure deployment, known as Infrastructure as a
code, which is highly prevalent in the cloud environment. DevOps can utilize tools such as
Chef and Puppet for instructed automation or use cloud-native tools if the workload is in a
cloud environment. Infrastructure automation provides excellent flexibility for the
development team for experimentation and enables the operations team to create replica
environments.

For smooth operation, a DevOps architect plans monitoring and alerting with automated
communication in the event of issues or any significant changes. Any security incidents,
deployment failures, or infrastructure failures can be monitored automatically, and alerts
can be sent via mobile or email to the respective team when required.

The DevOps architect also plans for disaster recovery different deployment methods.
Organizational Recovery Point Objective (RPO) is the volume of data loss that an
organization can tolerate. Recovery Time Object (RTO) suggests how much time the
application can take to recover and start functioning again. You will learn more about
DevOps in chapter 12, DevOps and Solution Architecture Framework.

[36]

Solution Architects in an Organization Chapter 2

Understanding a solution architect's
responsibilities

In the previous section, you learned about the role of a solution architect, the different types
of architect in an organization, and how they coexist. In this section, you will learn more
details about the responsibilities of a solution architect. A solution architect is a technical
leader, and a customer-facing role, which comes with many responsibilities. The primary
responsibility of a solution architect is to convert organization business visions into a
technical solution and work as a liaison between businesses and technical stakeholders. A
solution architect uses broad technology expertise and business experience to ensure the
success of the solution's delivery.

A solution architect's responsibilities may differ slightly based on the nature of the
organization. Often, in a consulting organization, a solution architect may be dedicated to a
particular project and customer, while in a product-based organization, a solution architect
may be working with multiple customers to educate them on a product and review their
solution design. Overall, a solution architect holds the following primary responsibilities:

Analyze
Functional
Requiremen

Solution
Scaling and
technology
evangelist

Define non-
functional
Requiremen

Understand
and engage

Solution
Design and
Delivery

Solution Architect
Reponsibilities

Prototyping
and Proof-Of-
Concept

Understand
constraints

Technology
Selection

Solution architect's responsibility model

[371]

Solution Architects in an Organization Chapter 2

As shown in the preceding diagram, there are various significant responsibilities for a
solution architect. In upcoming sections, you will learn about the various aspects of the
solution architect's responsibilities.

Analyzing user requirements

Business requirements are at the center of any solution design and they are defined in raw
terms when a project starts. It is necessary to engage a diverse set of groups from the
beginning, which includes the technical capability to identify requirements. The business
stakeholder defines requirements, and it warrants multiple adjustments when it comes to
technological evolution. To save effort, it is necessary to engage solution architects while
defining the user requirement document.

The solution architect designs the application, which may impact the overall business
outcome. This makes requirement analysis a critical skill that a solution architect should
possess. A good solution architect needs to have the skills of a business analyst and the
ability to work with a diverse set of stakeholders.

Solution architect bring a broad range of business experience with them. They are not only
technical experts but also have a good knowledge of the business domain. They work
closely with the product manager and other business stakeholders to understand all the
aspects of requirements. A good solution architect helps the product team uncover hidden
requirements, which a non-technical stakeholder may not have thought about from an
overall solution perspective.

Defining non-functional requirements

Non-functional requirements (NFR) may not be visible to users and customers directly,
but their absence may impact the overall user experience in a negative way and hamper the
business. NFR includes critical aspects of the system, such as performance, latency,
scalability, high availability, and disaster recovery. The most common non-functional
requirements are shown in the following diagram:

[38]

Solution Architects in an Organization Chapter 2

Performance

Security &
Compliance

S S

Non—FlunctiunaI Recoverability
Requirements

o

Availability Maintainability

Usability

Scalability -

Reliability

NFRs in a solution design

The preceding diagram shows the following NFRs for consideration:

¢ Performance:
¢ What will be the application load time for users?

¢ How can we handle network latency?

¢ Security and compliance:
e How can we secure an application from unauthorized access?

¢ How can we protect an application from malicious attacks?
e How can we meet local laws and audit requirements?

¢ Recoverability:
e How can we recover an application from an outage?

e How can we minimize recovery time in the event of an outage?
e How can we recover data loss?

[39]

Solution Architects in an Organization Chapter 2

¢ Maintainability:
e How can we ensure application monitoring and alerts?
¢ How can we ensure application support?

Reliability:
¢ How can we make sure the application performs consistently?
e How can we inspect and correct glitches?

Availability:
¢ How can we ensure the high availability of an application?
e How can we make an application fault-tolerant?

Scalability:
e How can we meet the increasing demand for resources?
e How can we achieve a good scale for a sudden spike in utilization?

Usability:
e How can we simplify an application's use?
e How can we achieve a seamless user experience?

However, depending on the nature of the project, there may be an NFR that is suitable for
that project only (for example, voice clarity for a call center solution). You will learn more
about these attributes in chapter 3, Attributes of the Solution Architecture.

The solution architect becomes engaged in a project from a very early stage, which means
they need to design a solution by gauging requirements across groups in an organization.
The solution architect needs to ensure consistency in solution design across system
components and requirements. The solution architect is responsible for defining NFR
across groups and different components since they make sure that the desired usability of a
solution is achieved across the board.

NFRs are an integral and essential aspect of solution design, which tends to slip when
teams are too focused on business requirements, and this can impact the user experience. A
good solution architect has the primary responsibility of conveying the importance of NFR
and making sure they are implemented as part of solution delivery.

[40]

Solution Architects in an Organization Chapter 2

Engaging and working with stakeholders

Stakeholders could be anyone who has a direct or indirect interest in the project. As well as
the customer and user, it may also be the development team, sales, marketing,
infrastructure, network, support team, or the project funding group.

Stakeholders could be internal or external to the project. Internal stakeholders include the
project team, sponsors, employees, and senior management. External stakeholders include
customers, suppliers, vendors, partners, shareholders, auditors, and the government.

Often, stakeholders have a different understanding of the same business problem as per
their context; for example, a developer may look at a business requirement from a coding
perspective, while an auditor may look at it from a compliance and security perspective. A
solution architect needs to work with all technical and non-technical stakeholders.

They possess excellent communication skills and negotiation techniques which help to find
out the optimal path for a solution while keeping everyone on board. A solution architect
works as a liaison between technical and non-technical resources and fills the
communication gap. Often, those communication gaps between a businessperson and the
technical team become a reason for failure. The businessperson tries to look at things from
more of a feature and functionality perspective, while the development team strives to
build a more technically compatible solution, which may sometimes lean toward the non-
functional side of the project.

The solution architect needs to make sure both teams are on the same page and that the
suggested features are also technically compatible. They mentor and guide the technical
team as required and put their perspective into a simple language that everyone can
understand.

Handling various architecture constraints

Architecture constraints are one of the most challenging attributes of solution design. A
solution architect needs to manage architectural constraints carefully and be able to
negotiate between them to find an optimal solution. Often, these constraints depend on
each other, and emphasizing on one limitation can inflate others.

[41]

Solution Architects in an Organization Chapter 2

The most common constraints are as following:

Architecture

Constraints

Architectural constraints in a solution design

As shown in the preceding diagram, solution design helps us understand the following
attributes of an application:

e Cost:
e How much funding is available for solution implementation?
¢ Expected Return on Investment (ROI)?
¢ Quality:
e How closely should outcomes match functional and non-functional
requirements?
e How can we ensure and track the quality of the solution?
e Time:

When should the output be delivered?
Is there any flexibility regarding time?

[42]

Solution Architects in an Organization Chapter 2

¢ Scope:
e What is the exact expectation?
¢ How does the requirement gap need to be handled and
accommodated?
¢ Technology:
e What technology can be utilized?
¢ What flexibility does using legacy versus new technologies
provide?
e Should we build in-house or source from a vendor?
e Risk:
e What can go wrong and how can we mitigate that?
e What is the risk tolerance of stakeholders?
¢ Resource:
e What is required to complete solution delivery?
e Who will work on the solution's implementation?
e Compliance:

e What are the local law requirements that can impact the solution?
e What are the audit and certification requirements?

There could be more specific constraints related to a project, such as storing data in a
country due to government regulation and opting for in-house development due to security
concerns. Handling constraints could be very tricky. Saving costs by reducing resources
may impact the delivery timeline.

Achieving a schedule with limited resources may affect quality, which in turn increases cost
due to unwanted bug fixes. So, finding the balance between cost, quality, time, and scope is
significant. Scope creep is one of the most challenging situations as it can negatively impact
all other constraints and increase risks of solution delivery.

It is essential for a solution architect to understand all the aspects of every constraint and to
be able to identify any resulting risk. They must put risk mitigation plans into place and
find a balance between them. Handling any scope creep can help a lot in delivering the
project on time.

[43]

Solution Architects in an Organization Chapter 2

Making technology selections

Technology selection is the key aspect and complexity of the solution architect's role. There
is a broad range of technologies available, and a solution architect is required to identify the
right ones for the solution. The solution architect needs to have a breadth and depth of
technologies to make the right decision since the chosen technology stack can impact the
overall delivery of the product.

Each problem can have multiple solutions and an available range of technologies. To make
the right selection, a solution architect needs to keep functional requirements and NFRs in
mind and define selection criteria while creating a technology decision. The selected
technology needs to consider different perspectives, whether the goal is the ability to
integrate with other frameworks and APIs or to meeting performance requirements and
security needs.

A solution architect should be able to choose the technology that not only satisfies current
requirements but also scaling for future needs.

Developing a proof of concept and a prototype

Creating a prototype is probably the most fun part of being a solution architect. To choose a
proven technology, a solution architect needs to develop a proof of concept (POC) in
various technology stacks to analyze their fit for functional and non-functional
requirements for the solution.

The idea of developing POC is to evaluate technology with a subset of critical functional
implementations, which can help us to decide on technology stack based on their
capabilities. It has a short life cycle and is limited to being reviewed by experts within a
team or organization. The solution design POC is when a solution architect is trying to
figure out the building blocks of the solution.

After evaluating multiple platforms using POC, the solution architect may proceed with
prototyping to a technology stack. A prototype is developed for demonstration purposes
and given to the customer so that it can be used to secure funding. POCs and prototyping
are by no means production-ready; solution architect builds have limited functionality,
which can prove a challenging aspect of solution development.

[44]

Solution Architects in an Organization Chapter 2

Designing solutions and staying through delivery

Solution architects work on solution design after understanding different aspects of
functional requirements, NFRs, solution constraints, and technology selection. In an agile
environment, this is an iterative approach where the requirements may change over time
and need to accommodate the solution design.

The solution architect needs to design a future-proof solution, which should have strong
building blocks and be flexible enough to adjust to changes. However, the solution architect
needs to be careful about drastic changes to the requirements and apply a risk mitigation
plan.

For future-proof design, you can take the example of a loosely coupled microservice
architecture based on RESTful APIs. These architectures can be extendable to new
requirements and have the ability to integrate easily. You will learn more about different
architecture designs in Chapter 6, Solution Architecture Design Patterns.

The following flow-chart shows the solution delivery life cycle. The solution architect is
involved in all the phases of solution design and delivery:

Business Requirement Prototyping and

eIt Analysis and Recommendation|
Vision Technical vision

Solution Design

Operations and
Maintenance

Integration and

Implementation Testing \\< Development

Solution delivery life cycle

As shown in the preceding diagram, the solution delivery life cycle includes the following:

* Business Requirement and Visions: A solution architect works with business
stakeholders to understand their vision.

¢ Requirement Analysis and Technical Vision: A solution architect analyzes the
requirements and defines a technical vision in order to execute the business
strategy.

[45]

Solution Architects in an Organization Chapter 2

Prototyping and Recommendation: A solution architect makes a technology
selection by developing POC and showcase prototypes.

Solution Design: A solution architect develops solution designs in line with an
organization's standards and in collaboration with other impacted groups.
Development: A solution architect works with the development team on
solution development and works as a bridge between the business and technical
team.

Integration and Testing: A solution architect makes sure that the final solution is
working as expected with all functional and non-functional requirements.
Implementation: A solution architect works with the development and
deployment team for smooth implementation and guides them through any
hindrances.

Operation and Maintenance: A solution architect makes sure logging and
monitoring are in place and guides the team on scaling and disaster recovery as
required.

However, the overall life cycle is an iterative process. Once the application goes into
production and customers start using it, you may discover more requirements from
customer feedback, which will drive the product vision for future enhancements.

The solution architect has major ownership during solution design in which they do the

following;:

Document solution standards

Define high-level design

Define cross-system integration

Define different solution phases

Define an implementation approach

Define a monitoring and alert approach
Document the pros and cons of design choices
Document audit and compliance requirement

Solution architects are not only responsible for solution design. They also help project
managers with resource and cost estimation, defining the project's timeline and milestones,
the project's release, and its support plan. The solution architect works through different
phases of the solution life cycle, from design to delivery and launch. The solution architect
helps the development team overcome obstacles and hurdles by providing expertise and a
broad understanding.

[46]

Solution Architects in an Organization Chapter 2

Ensuring post-launch operability and
maintenance

The solution architect plays an integral role after the solution's launch in respect of product
operability. To handle the increasing user base and product utilization, a solution architect
should know how to scale the product to meet demands and ensure high availability
without impacting the user experience.

In unforeseen events such as outages, a solution architecture guides you to execute a
disaster recovery plan for business process continuation. The solution architect satisfies
organization Recovery Point Objectives (RPO) and Recovery Point Objectives (RTO).
RPO is how much data loss an organization can tolerate in terms of the volume of data
which is lost during the outage interval— for example, a loss of 15 minutes of data. RTO is
how much time the system takes to get back up and running again. You will learn more
about RTO and RPO in chapter 12, DevOps and Solution Architecture Framework.

In the event of performance issues due to an increase in demand, the solution architect
helps scale the system horizontally to mitigate application bottlenecks or vertically to
alleviate database bottlenecks. You will learn more about different scaling mechanisms and
self-healing in chapter 9, Architectural Reliability Considerations.

The solution architect plans to accommodate any new requirements in an existing product
that arise from usage patterns, or due to any other reason. They can make changes to non-
functional requirements based on monitoring user behavior; for example, users bounce off
the page if it takes more than 3 seconds to load. The solution architect works through this
and guides the team in handling issues that may occur post-release.

Working as a technology evangelist

An evangelist is the most exciting part of the solution architect role where they work as a
technology evangelist. The solution architect increases product and platform adoption by
spreading the word through public forums. They write blogs about solution
implementation and conduct workshops to showcase potential benefits and the use of
technology platforms.

They build mass support for technologies and help establish a standard. A solution
architect should be passionate about technology. They should be an excellent public
speaker and possess excellent writing skills to perform the technology evangelist role.

[47]

Solution Architects in an Organization Chapter 2

Solution architects in an agile organization

In the last half decade, you may have seen the rapid adoption of the Agile methodology. In
this competitive market, an organization needs to be proactive toward rapid changes and
bring output to the customer a very fast. Fast innovation and release can only be possible if
organizations are adapting quickly and respond to change faster, which means there must
be flexibility built into every part of the organization and solution architecture.

To be successful in an agile environment, a solution architect needs an agile mindset and
must adopt the rapid delivery method by continuously working with stakeholders to fulfill
their needs. First, let's understand a little bit more about the Agile methodology. This is a
vast topic, and in this section, we will take a high-level overview of it.

Why Agile methodology?

Agile can create and respond to changes to make a profit in a fast-moving business
environment. Its agility comes from balancing flexibility and stability. In today's
competitive environment, where technology is moving fast (which results in a high
probability of changes and customer demand), agile is the answer to coping with the
situation and gaining a competitive edge.

Nowadays, all successful organizations are customer driven. They take frequent feedback
from end users on their products and use that feedback to expand their user base. Agile
helps gather results from the development team to continuously adapt feedback into
software releases, and most of the time everything has a high priority. To deal with this
situation, you need agile.

Executive management provides funding and looks for transparency. They demand
productive output to increase ROI, and you want to win their confidence by showing
incremental development of the product. To create transparency for a project and keep
track of its budget and delivery timeline, you need agile.

When you continuously want to engage your stakeholders by showing them a
demonstration of the product, and when development and testing are part of the same
cycle, you need Agile methodology.

In the preceding scenarios, you looked at various situations where the Agile methodology
is required to keep the organization ahead with robust delivery and customer feedback.

[48]

Solution Architects in an Organization Chapter 2

Agile is able to quickly move in a time box manner, which means you time box activities in a
short cycle and take an iterative approach for product development instead of working on
the entire product to develop and deliver it at once. The agile method advocates seeking
continuous feedback by keeping customers and stakeholders engaged closely, involving
them in every phase of product development, adapting feedback into requirements,
evaluating market trends, and working with them to prioritize the stakeholders. Then, the
development team take up the prioritized requirements, conduct technical analyses, design,
develop, test, and deliver.

Everyone works as one team toward one goal and breaks the silo mindset. Agile thinking
helps the technical team understand the requirements from the customer's perspective and
respond to changes quickly and efficiently. This is the reason why most companies want to
go agile. The Agile methodology is fast and easy to adopt using many tools that are
available on the market, such as JIRA, VersionOne, and Rally. You may face some initial
challenges while developing agile thinking, but the benefits are very high compared to the
challenges that every organization faces when moving toward adopting the Agile
methodology.

Agile manifesto

Applying any agile method requires a clear understanding of the four values stated in the
Agile manifesto. Let's understand these manifestos:

¢ Individuals and interactions over processes and tools: Processes and tools
always help complete the project. Project stakeholders, who are a part of the
project, know how to implement the plan and how to deliver the successful
result with the help of tools for project delivery. But the primary responsibility
for project delivery is the people and their collaboration.

¢ Working software over comprehensive documentation: Documentation is
always an essential process for any product's development. In the past, many
teams only worked to collect and create a repository for documents such as high-
level design, low-level design, and design change, which later help achieve
qualitative and quantitative descriptions of the product.

With the Agile methodology, you focus on the deliverable. Therefore, according
to this manifesto, you need documentation. However, you need to define how
much documentation is vital to the continuous delivery of the product. Primarily,
the team should focus on delivering software incrementally throughout the
product's life cycle.

[49]

Solution Architects in an Organization Chapter 2

e Customer collaboration over contract negotiation: Earlier, when organizations
worked on a fixed bid or time & material projects, the customer always came in
the first and the last stages of the software life cycle. They were outsiders who
were not involved in product development; by the time they finally got a chance
to see the product after launch, the market trends had changed, and they lost the
market.

Agile believes that customers share equal responsibility for the product's launch
and that they should be involved in every step of development. They are part of
demonstrating giving feedback based on new market trends or consumer
demand. Since the business is now part of the development cycle, these changes
can be attainable by being agile and having continuous customer collaboration.

¢ Responding to change when following a plan: In the current fast-paced market
in which customers demand change with new market trends, businesses keep on
changing. It is vital to make sure there's a balance between frequently changing
the requirements and agilely welcoming the changes since sprint cycles vary
from 1 to 3 weeks. Responding to change means that if, anything changes in the
specification, the development team will accept the change and show the
deliverable in sprint demonstrations to keep winning the confidence of the
customers. This manifesto helps the team understand the value of welcoming
changes.

The Agile Manifesto is a tool that's used to establish basic guidelines for adopting
an agile methodology. These manifestos are the core of all agile techniques. Let's
understand the agile process in more detail.

Agile process and terminology

Let's get familiar with the most common agile terminologies and how they bind together.
Here, you will learn about the agile scrum process, which is widely adopted. The agile
scrum process has a small sprint cycle of 1 to 3 weeks, depending on the project's stability,
but the most common is a 2-week sprint cycle, which you can call a development cycle.

These sprints are development cycles where the team will analyze, develop, test, and
deliver a working feature. The team takes an iterative approach and creates a working
building block of the product as the project progresses with each sprint. Each requirement
is written as a user story that keeps a customer persona in mind, and makes the
requirement clearly visible.

[50]

Solution Architects in an Organization Chapter 2

The agile scrum team has varied roles. Let's understand the most common roles and how
the solution architect collaborates with them:

e Scrum Team: This consists of the Product Owner, Scrum Master, and
development team. Analysts, technical architects, software engineers, software
testers, and deployment engineers are part of the development team.

e Scrum Master: This facilitates all scrum ceremonies (which you will learn in next
section), keeps the team motivated, and removes impediments for the team. The
Scrum Master works with the solution architect to remove any technical blockers
and get technical clarification for business requirements.

¢ Product owner: This is a businessperson who is a customer advocate. The
product owner understands market trends and can define priorities within the
business. The solution architect works with the product owner to understand the
business' vision and keep it aligned with the technical view.

¢ Development team: They do product implementation and are responsible for the
project's delivery. They are a cross-functional team that is committed to
continuous and incremental delivery. The solution architect needs to work
closely with the development team for smooth product implementation and
delivery.

Sprint ceremonies

The sprint cycle includes multiple activities that are performed to manage development,
which are often called scrum ceremonies. Those scrum ceremonies are as follows:

¢ Backlog grooming: Grooming is a time-box meeting in which the product owner,
solution architect, and business connect to discuss backlog stories, prioritize
them, and create a consensus for sprint deliverables.

¢ Sprint planning: In sprint planning, the Scrum Master facilitates groomed stories
being assigned to the scrum team based on the team's capacity.

e Sprint Daily Standup: Daily Standup is a very efficient way of collaboration,
where all team members meet in one place, and all discuss their last day
workload, what plans they have for today, and whether they are facing any
problems. This meeting is meant to be short and straightforward and around 15
minutes in length. Standup is the platform that the solution architect uses to
collaborate with the development team.

[51]

Solution Architects in an Organization Chapter 2

¢ Sprint demonstration: During demonstrations, all stakeholders gather and
review the team's work of what they had done in a sprint. Based on this, the
stakeholder accepts and rejects the stories. The solution architect makes sure that
the functional and non-functional requirements have been met. During this
meeting, teams collect feedback from the product owners and solution architect
and look at what changes were made.

¢ Sprint retrospect: Retrospect is conducted at the end of each sprint cycle and is
where the team inspects and adopts best practices. The team identifies things that
went well and what they should continue to practice, as well as things that they
can do better in the next sprint. Sprint Retrospect helps the organization apply
continuous improvement while working on their delivery.

Agile tools and terms

Let's learn about some agile tools that help drive team metrics and project progress:

¢ Planning poker: Planning poker is one of the most popular estimation
techniques in agile methodology, where the Scrum Master plays poker games to
estimate user stories when a sprint starts. During this activity, each user story
will be evaluated based on its complexity. Team members use comparative
analysis to give story points for each user story, which helps the team
understand how much effort is required to complete the user stories.

¢ Burndown chart: A burndown chart is used to monitor sprint progress and help
the team understand how much work is pending. The Scrum Master and the
team always follow the burndown chart to make sure there is no risk in the
sprint and reuse that information to improve the estimation next time.

¢ Product backlog: The product backlog contains a collection of requirements in
the form of user stories and epics. The product owner continuously updates the
backlog and prioritizes requirements during sprint grooming. Epic is a high-level
requirement, and product owners write a user story to refine them. The
development team breaks down these user stories into a task, which is an
executable action item.

e Sprint board: The sprint board contains a collection of user stories listed for the
active sprint. The sprint board provides transparency as anyone can look at the
project's progress for that particular sprint cycle. The team refers to the board on
a daily standup to determine overall work progress and remove any
obstructions.

[52]

Solution Architects in an Organization Chapter 2

¢ Definition of Done: This means all user stories should pass the Done criteria that
have been set up by the solution architect and product owner in collaboration
with stakeholders. Some of these criteria are as follows:
e The code must be peer reviewed

The code should be unit tested
Enough documentation

Code quality

Code writing standard

Agile versus waterfall

Waterfall is one of the oldest and most traditional software development methodologies
that organizations used to follow. In this section, you will learn about the difference
between waterfall and agile and why organizations need to move over to agile. We are not
going to look at the details of the waterfall process; instead, we will point out the key
differences:

¢ Agile methodologies help change the mindset from the traditional method to an
agile mindset. The motivation for this is to move from a waterfall method to agile
methods in order to achieve maximum business values and win customer
confidence. This makes agile an advocate for customer collaboration at each step
and provides transparency. The waterfall method tends to be more project-and
document-centric, where customers were involved at the end phase.

¢ The waterfall method is more helpful for the project where all requirements are
unambiguous, and the sequence of their deliverables also known, which helps
remove any unpredictability as requirements are very straightforward. The Agile
methodology is helpful for companies that want to keep up with the market
trend and have increased pressure from the customer. They need early releases
for their products and have to be adaptive to changes in the requirements.

¢ Agile projects are delivered in a small iterative manner with the highest quality
and to achieve business value. Many agile teams work in parallel across the
sprint to provide a shippable solution for the product at every end of the sprint
cycle. As every sprint has a small deliverable and keeps building on top of that,
the customer continuously gets to see the working model of the product.
Waterfall has a long cycle and stakeholders get to see the final product at the end,
which means there isn't much scope left to accommodate changes.

[53]

Solution Architects in an Organization Chapter 2

¢ The agile process makes sure the team is progressing toward the goal and that
the project will be completed on time by putting checkpoints at every sprint
cycle. In traditional waterfall methods, there is no frequent checkpoint that can
ensure that the team is on the right path and verify whether the project will be
completed on time, which may cause ambiguity.

¢ In the Agile methodology, the customer always collaborates with the product
owner and the team. This collaboration makes sure they observe and review the
small, shippable product. Agile also ensures that work is being done and shows
progress to the stakeholder. However, in the waterfall method, there is no such
customer interaction until the project ends.

Agile is the most adaptive methodology since fast-moving technologies and businesses are
becoming so unpredictable and need high velocity. Agile supports inspecting and adapting
cycles, which creates a balance between demand and control.

Agile architecture

What comes into your mind when you think about the solution architect in an agile model?
there are many myths, such as thinking that the solution architecture is a very complex
activity, and with agile you will be asked to submit your design right away or in the next
sprint cycle. Another myth is that the agile architecture will not be robust to such
architecture design and development, that testing cannot be possible, and so on.

Agile architecture is about designing decoupled and extendable interfaces. A solution
architect in an agile environment needs to follow an iterative re-architect concept by
inspecting and adapting the approach. It's about choosing the right solution for enterprises,
communicating well, taking continuous feedback, and modeling in an agile way. The
development team needs a solid foundation and the ability to adapt to a changing
requirement; they need guidance and mentoring from a solution architecture.

The foundation of the agile architecture should be reducing the cost of changes, reducing
unnecessary requirements by challenging them, and creating a framework to reverse
incorrect requirements rapidly. The Agile architect builds prototypes to minimize risk and
plans for change by understanding them. They design the prototype while balancing the
needs of all stakeholders and creating a loosely coupled architecture that can easily
integrate with other modules. You will learn more about various loosely coupled
architecture patterns in chapter 6, Solution Architecture Design Patterns.

[54]

Solution Architects in an Organization Chapter 2

Summary

In this chapter, you learned how the solution architect fits into the organization and how
different kinds of solution architect roles coexist. There is generalist solution architect role
such as enterprise solution architect, solution architect, technical architect, cloud architect,
and architect evangelist.

The generalist solution architect has a broad knowledge of technology and may develop in-
depth expertise in a particular area. The specialist solution architect dives deep in other
required areas of the project. The specialist solution architect possesses in-depth knowledge
of their area of expertise, with some of the most common specialist solution architect roles
being network architect, data architect, security architect, infrastructure architect, and
DevOps architect.

You learned about solution architect responsibilities in great detail. Solution architects wear
multiple hats; they work with stakeholders across the organization and analyze functional
requirements and define non-functional requirements. The solution architect ensures
consistency and standards across the organization, and they provide technology
recommendations and solution prototypes. The solution architect handles various project
constraints such as cost, quality, scope, and resources, and finds a balance between them.

The solution architect helps the project manager estimate cost and resources, and define a
timeline, and stays throughout the project from design to launch. During the project's
implementation, the solution architect makes sure that the stakeholder's expectations have
been met and works as a liaison between the technical and business teams. The solution
architect engages in post-launch application monitoring, alerts, security, disaster recovery,
and scaling.

At the end of this chapter, you learned about the benefits of an agile process. We took a
brief overview of the Agile methodology, roles, tools, terminology, and how agile differ
from the traditional waterfall method. You learned about the traits of the agile architecture
and how solution architects should make their architecture more flexible and agile.

In the next chapter, you will learn about the different attributes of the solution architecture
that you should consider while designing a solution. These attributes include architecture
security, scalability, availability, reliability, fault tolerance, extensibility, portability,
interoperability, operational excellence, performance efficiency, cost optimization, and self-
healing.

[551]

Attributes of the Solution
Architecture

The solution architecture needs to consider multiple attributes and design applications.
Solution design may have a broad impact across numerous projects in an organization and
that demands a careful evaluation of the various properties of the architecture and striking
a balance between them.

This chapter will provide an overall understanding of each attribute and how they are
related to each other and coexist in solution design.

There may be more attributes, depending on the solution's complexity, but in this chapter,
you will learn about the common characteristics that can be applied to most aspects of
solution design. You can also view them as NFRs (which fulfills an essential aspect of
design). It is the responsibility of a solution architect to look at all the attributes and make
sure they satisfy the desired requirements and fulfill customer expectations.

In this chapter, we will cover the following topics:

e Scalability and elasticity

e High availability and resiliency

e Fault tolerance and redundancy

¢ Disaster recovery and business continuity
¢ Extensibility and reusability

¢ Usability and accessibility

e Portability and interoperability

¢ Operational excellence and maintainability
e Security and compliance

¢ Cost optimization and budgets

Attributes of the Solution Architecture Chapter 3

Scalability and elasticity

Scalability has always been a primary factor while designing a solution. If you ask any
enterprise about their existing and new solutions, most of the time they like to plan ahead
for scalability. Scalability means giving your system the ability to handle growing
workloads, and it can apply to multiple layers, such as the application server, web app, and
database.

As most applications nowadays are web-based, let's talk about elasticity. This is not only
about growing out your system by adding more capabilities but also shrinking it to save
cost. Especially with the adoption of the public cloud, it becomes easy to grow and shrink
your workload quickly, and elasticity is replacing the term scalability.

Traditionally, there are two modes of scaling:

e Horizontal scaling: It is becoming increasingly popular as compute commodity
has become exponentially cheaper in the last decade. In horizontal scaling, the
team adds more instances to handle increasing workloads:

00

W

Horizontal scaling

For example, as shown in the preceding diagram, let's say your application is
capable of handling a thousand requests per second with two instances. As your user
base grows, the application starts receiving 2,000 requests per second, which means
you may want to double your application instance to four to handle the increased
load.

e Vertical scaling: This has been around for a long time. It's where the team adds
additional compute storage and memory power to the same instance to handle
increasing workloads. As shown in the following diagram, during vertical
scaling, you will get a larger instance rather than adding more new instances to
handle increased workload:

[571

Attributes of the Solution Architecture Chapter 3

GG
N

Vertical scaling

(

= JO
.

The vertical scaling model may not be cost-effective. When you purchase
hardware with more compute and memory capacity, the cost increases
exponentially. You want to avoid vertical scaling after a certain threshold unless it
is essential. Vertical scaling is most commonly used to scale relational database
servers. However, you need to think about database sharding here. If your server
hits the limits of vertical scaling, a single server cannot grow beyond certain
memory and compute capacity.

The capacity dilemma in scaling

Most businesses have a peak season when the user is most active, and the application has to
handle an additional load to meet demands. Take the classic example of an e-commerce
website, selling all kinds of products such as cloth, groceries, electronic items, merchandise,
and many more. These e-commerce sites have regular traffic throughout the year but get 10
times more traffic in the shopping season, for example, Black Friday and Cyber Monday in
the US, or Boxing Day in the UK. This pattern creates an interesting problem for capacity
planning, where your workload is going to increase drastically for just 1 month in the entire
year.

In the traditional on-premise data center, ordering additional hardware can take between 4
to 6 months before it becomes application-ready, which means a solution architect has to
plan for capacity. Excess capacity planning means your IT infrastructure resources will be
sitting idle for most of the year, and less capacity means you are going to compromise user
experience during significant sales events, thus impacting the overall business significantly.
This means a solution architect needs to plan elastic workloads, which can grow and shrink
on demand. The public cloud made this very easy.

[581]

Attributes of the Solution Architecture Chapter 3

Scaling your architecture

Let's continue with the e-commerce website example by considering a modern three-tier
architecture. Let's see how we can achieve elasticity at a different layer of the application.
Here, we are only targeting the elasticity and scalability aspects of architecture design. You
will learn more about this in chapter 6, Solution Architecture Design Patterns.

The following diagram shows a three-tier architecture diagram of the AWS Cloud tech
stack:

AWS Cloud .g

Elastic Load Amazon

Balancing \Joute 53 Amazon 53

T
—'r—
Auto Scaling group

Web Server Fleet Amazon EC2 Amazon EC2 Amazon EC2

EEDE ° @EE

Auto Scaling group Amazon
CloudFront

Amazon€C2 — Appllcatlcn Server Fleet

read replica read replica &

Users

Scaling three-tier architecture

In the preceding architecture diagram, you can see a lot of components, such as the
following;:

e Virtual server (Amazon EC2)

Database (Amazon RDS)

Load balancer (Amazon Elastic Load Balancer)

DNS Server (Amazon Route53)

CDN Service (Amazon CloudFront)

Network boundary (VPC) and Object Store (Amazon S3)

[591]

Attributes of the Solution Architecture Chapter 3

As shown in the preceding diagram, there is a fleet of web servers and application servers
behind the load balancer. In this architecture, the user sends an application request to the
load balancer, which routes traffic to the web server. As user traffic increases, auto scaling
adds more servers in the web and application fleet. When there is low demand, it removes
additional servers gracefully. Here, auto scaling can add or remove servers based on the
chosen matrix-like CPU utilization and memory utilization; for example, you can configure
whether CPU utilization goes beyond 60% and add three new servers; if this goes below
30%, you can then remove two existing servers.

We will dive deep into each component throughout this book. In the next section, you will
learn about static content scaling.

Static content scaling

The web layer of the architecture is mostly concerned about displaying and collecting data
and passing it to the application layer for further processing. In the case of an e-commerce
website, each product will have multiple images and maybe videos to show a product's
texture and demos, which means the website will have lots of static content with read-
heavy workload since, most of the time, users will be browsing products.

Storing static content in the web server means consuming lots of storage space, and as
product listings grow you have to worry about scalability. The other problem is that static
content (such as high-resolution images and videos) is heavy in size, which may cause
significant load latency on the user’s end. The web tier needs to utilize the Content
Distribution Network (CDN) to solve this issue.

CDN providers (such as Akamai, Amazon CloudFront, Microsoft Azure CDN, and Google
CDN) provide edge locations across the globe where static content can be cached from the
web server to available videos and images near the user's location and reduce latency.

To scale the origin storage, it's recommended to use object storage such as Amazon S3 or an
on-premise custom origin, which can grow independent of memory and compute
capabilities. These storage solutions can hold static HTML pages to reduce the load of web
servers and enhance user experience by reducing latency through the CDN network.

[60]

Attributes of the Solution Architecture Chapter 3

Server fleet elasticity

The application tier collects user requests from the web tier and performs the heavy lifting
of calculating business logic and talking to the database. When user requests increase, the
application tier needs to scale to handle them and shrink back as demands decrease. In such
scenarios, users are tied to the session, where they may be browsing from their mobile and
purchasing from their desktop. Performing horizontal scaling without handling user
sessions may cause a bad user experience as it will reset their shopping progress.

Here, the first step is to take care of user sessions by decoupling them from the application
server instance, which means you should consider maintaining the user session in an
independent layer such as a NoSQL database. NoSQL databases are key-value pair stores,
where you can store semi-structured data.

Once you start storing your user session in NoSQL databases such as Amazon DynamoDB
or MongoDB, your instance can scale horizontally without impacting the user experience.
You can add a load balancer in front of a fleet of application servers, which can distribute
the load among instances; with the help of auto scaling, you can automate adding or
removing instances on demand.

Database scaling

Most applications use relational databases to store their transactional data. The main
problem with relational databases is that they can scale horizontally until you plan for
other techniques such as sharding and modifying your application accordingly. This
sounds like a lot of work.

When it comes to databases, it is better to take preventive care and reduce their load. Using
a mix of storage, such as storing user sessions in separate NoSQL databases and storing
static content in an object store, helps to offload the master database. It's better to keep the
master database node only for writing and updating data and use an additional read
replica for all read requests.

Amazon RDS engine provides up to six read replicas for relational databases, and Oracle
plugins can live-sync data between two nodes. Read replicas may have milliseconds of
delay while syncing with the master node, and you need to plan for that while designing
your application. It is recommended to use a caching engine such as Memcached or Redis
to cache frequent queries and thus reduce the load to the master node.

[61]

Attributes of the Solution Architecture Chapter 3

If your database starts growing beyond capacity, then you need to redesign and divide the
database in the shard by applying partitions. Here, each shard can grow independently,
and the application needs to be determined based on a partition key that the shard request
will go to.

So, as you can see, scalability is a significant factor while designing a solution architecture,
and it can impact the overall project budget and user experience significantly if it's not
planned properly. A solution architect always needs to think in terms of elasticity while
designing applications and optimizing workloads for the best performance and cost.

Statistical Analysis System (SAS) need to evaluate different options such as CDNs for
static content scaling, load balancing, and autoscaling options for server scaling and various
data storage options for caching, object stores, NoSQL stores, read replicas, and sharding.

In this section, you learned about various methods of scaling and how to inject elasticity
into the different layers of your architecture. Scalability is an essential factor to ensure you
have high application availability and make your application resilient. We'll learn more
about high availability and resiliency in the next section.

High availability and resiliency

The one thing an organization doesn't want to see is downtime. Application downtime can
cause a loss of business and user trust, which makes high availability one of the primary
factors while designing the solution architecture. The requirement of application uptime
varies from application to application.

If you have an external-facing application with a large user base such as an e-commerce
website or social media, then 100% uptime becomes critical. In the case of an internal
application (accessed by an employee such as an HR system or internal company), a blog
can tolerate some downtime. Achieving high availability is directly associated with cost, so
a solution architect always needs to plan for high availability, as per the application
requirements, to avoid over-architecting.

To achieve a high availability (HA) architecture, it's better to plan workloads in the
isolated physical location of the data center so that if an outage happens in one place, then
your application replica can operate from another location.

As shown in the following architecture diagram, you have a web and application server
fleet available in two separate availability zones (which is the different physical location of
the data center). The load balancer helps distribute the workload between two availability
zones in case Availability Zone 1 goes down due to power or network outage. Availability
Zone 2 can handle user traffic, and your application will be up and running.

[62]

Attributes of the Solution Architecture Chapter 3

In the case of the database, you have a standby instance in Availability Zone 2, which will
failover and become the primary instance in the event of an issue in Availability Zone 1.
Both the master and standby instances continuously sync data:

AWS Cloud .g

Availability Zone 1 - Elastic Load Amazon ' Availability Zone 2 :
~Balancing Route 53 . : Amazqn 53

e g g

AmazonECZ Amazon EC2 AmazonEC2 | Web Server Fleet

Amazon EC2 Amazon EC2 Amazon EC2 — i

p— B mmm

i i , - [
Application Server FIEEt,_F———'r' AmazonEC2 ___ Amazon EC2 AmazonEC2 | |
R s e S

DB instance : i DB instance DB instance
read replica | i__read replica standby

Amazon RDS

High availability and resilience architecture

The other factor is the architecture's resiliency. When your application is in trouble and you
are facing an intermittent issue then apply the principle of self-healing, this means your
application should be able to recover itself without human intervention.

For your architecture, resiliency can be achieved by monitoring the workload and taking
proactive action. As shown in the preceding architecture, the load balancer will be
monitoring the health of instances. If any instance stops receiving the request, the load
balancer can take out the bad instances from the server fleet and tell autoscaling to spin up
a new server as a replacement. The other proactive approach to monitor the health of all
instances (such as CPU and memory utilization and spinning up new instances as soon as a
working instance starts to reach a threshold limit) such as CPU utilization is higher than
70% or that memory utilization is more than 80%.

[63]

Attributes of the Solution Architecture Chapter 3

The attributes of high availability and resiliency can help in terms of cost by achieving
elasticity, for example, if server utilization is low, you can take out some servers and save
costs. The HA architecture goes hand in hand with self-healing, where you can make sure
that your application is up and running, but; you also need to have a quick recovery to
maintain the desired user experience.

Fault-tolerance and redundancy

In the previous section, you learned that fault tolerance and high availability have a close
relationship with each other. High availability means your application is available for the
user, but maybe with degraded performance. Suppose you need four servers to handle a
user's traffic. For this, you put two servers in two different physically isolated data centers.
If there is an outage in one data center, then user traffic can be served from another data
center. But now, you have only two servers, which means you're left with 50% of the
original capacity, and users may experience performance issue. In this scenario, your
application has 100% high availability but is only 50% fault tolerant.

Fault tolerance is about handling workload capacity if an outage occurs without
compromising system performance. A full fault-tolerant architecture involves high costs
due to increased redundancy. It depends on your application's criticality as whether your
user base can live with degraded performance for a period of application recovery:

! Load Balancer!

100% high availability, 50% fault-tolerance

100% high availability, 100% fault-tolerance

Fault-tolerance architecture

[64]

Attributes of the Solution Architecture Chapter 3

As shown in the preceding diagram, your application needs four servers to handle the full
workload by distributing them into two different zones. In both scenarios, you are
maintaining 100% high availability.

To achieve 100% fault tolerance, you need full redundancy and have to maintain the double
count of the server so that the user doesn't encounter any performance issues during the
outage of one zone. By keeping the same number of servers, we will achieve only 50% fault
tolerance.

While designing the application architecture, a solution architect needs to determine the
nature of the application's user base, only design for 100% fault tolerance (as required) and
offset any redundancy costs involved.

Disaster recovery and business continuity

In the previous section, you learned about using high availability and fault tolerance to
handle application uptime. There may be a situation when the entire region where your
data center is located goes down due to massive power grid outages, earthquakes, or
floods, but your global business should continue running. In such situations, you must
have a disaster recovery plan where you will plan your business continuity by preparing
sufficient IT resources in an entirely different region, maybe in different continents or
countries.

When planning disaster recovery, a solution architect must understand an organization's
Recovery Time Objective (RTO) and Recovery Point Objective (RPO). RTO means how
much downtime a business can sustain without any significant impact. RPO indicates how
much data loss a business can resist. A reduced RTO and RPO means more cost, so it is
essential to understand whether the business is mission-critical and needs minimal RTO
and RPO.

The following architecture diagram shows a multi-site disaster recovery architecture where
the primary data center location is in Ireland, Europe, and the disaster recovery site is in
Virginia, USA, hosted on AWS public cloud. In this case, your business will continue
operating, even if something happens to the entire European region or to the public cloud.
The fact that the disaster recovery plan is multi-site to achieve minimal RTO and RPO
means minimal to no outage and no data loss:

[65]

Attributes of the Solution Architecture Chapter 3

aws
W AWS Cloud On-premise
el Amazon Route 53
E US East North Virginia Region 1 Eurone T
: ; ‘ urope Irelan
Y e Y B8 BB
Server Dol
Amazon EC2 Fleet Amazon EC2 i i 3 Web Servers
@"—J Application "_i:;}'——l ' ‘ : Iﬁ I%l E| EI
Server Fleet i
: Amazon EC2 AmazonECz | | | : Application
******************************* o ‘ Servers
=] |
2N T © |
. Amazon RDS : ‘ Data 1 Database
""""""""""""""""""""""" | Replication

Hybrid multi-site disaster recovery architecture

The following are the most common disaster recovery plans, all of which you will learn
about in chapter 12, DevOps and Solution Architecture Framework:

¢ Backup and Store: This plan is the least costly and has maximum RTO and RPO.
In this plan, all the server's machine images, and database snapshots should be
stored in the disaster recovery site. In the event of a disaster, the team will try to
restore the disaster site from a backup.

e Pilot Lite: In this plan, all the server's machine images are stored as a backup,
and a small database server is maintained in the disaster recovery site with
continual data sync from the main site. Other critical services, such as Active
Directory, may be running in small instances. In the event of a disaster, the team
will try to bring up the server from the machine image and scale up a database.
Pilot Lite is a bit more costly than the backup and recovery option but has less
RTO and RPO than Backup and Store.

[66]

Attributes of the Solution Architecture Chapter 3

e Warm Standby: In this plan, all the application servers and the database server
(running on lower capacity) instances in the disaster recovery site and continue
to sync up with the leading site. In the event of a disaster, the team will try to
scale up all the servers and databases. Warm Standby is costlier than the Pilot
Lite option but has less RTO and RPO.

e Multi-site: This plan is the most expensive and has a near-zero RTO and RPO. In
this plan, a replica of the leading site maintains in a disaster recovery site with
equal capacity and actively serves user traffic. In the event of a disaster, all traffic
will be routed to an alternate location.

Often, organizations choose a less costly option for disaster recovery, but it is essential to
do regular testing and make sure the failover is working. The team should put a routine
checkpoint in operational excellence to make sure there's business continuity in the event of
disaster recovery.

Extensibility and reusability

Businesses evolve as they grow, where applications not only scale to handle an increased
user base but also keep adding more features to stay ahead and get a competitive edge. A
solution design needs to be extendable and flexible enough to modify an existing feature or
add new functionality. To modularize their application, often organizations want to build a
platform with a group of features and launch them as separate applications. This is only
possible with reusable design.

To achieve solution extensibility, a solution architect needs to use a loosely coupled
architecture wherever possible. At a high level, creating a RESTful- or queue-based
architecture can help develop loosely coupled communication between different modules
or across applications. You will learn more about the other kinds of architecture in chapter
6, Solution Architecture Design Patterns. In this section, we will take a simple example to
explain the concept of architecture flexibility.

The following architecture diagram shows an API-based architecture in an e-commerce
application. Here, you have independent services such as product catalog, order, payment,
and shipping being utilized by an end user application in a pick-and-choose manner.
Mobile and browser applications are used by the customer to place an online order. These
applications need a product catalog service to browse the product on the web, an order
service to place an order, and a payment service to make a payment.

[671]

Attributes of the Solution Architecture Chapter 3

The product catalog and order service, in turn, communicate with the shipping service to
send ordered items to the customer's doorstep. On the other hand, brick-and-mortar stores
use Point of Sales systems, where a customer representative scans barcodes, places orders
on behalf of the customer, and takes payment. Here, no shipping service is required as the
customer picks the item up in-store:

-

» | Inventory
\ DB
Product Catalog
Service

Web and Browser
App

* Order

DE
. Order Service
S
\1 /;eward AP

Store Point Of Sale App
Payment Service

> Payment

(0 (0

Extensible API-based architecture

In the preceding diagram, you can see the Reward API, which is used for third-party API
integration. This architecture allows you to extend the current design to integrate the
Reward API for customer retention and to attract new customers by providing benefits
when they purchase an item.

Here, you can see how payment services are reutilized by both online and store ordering.
Another service can reuse this if the organization wants to take payments for gift card
service, food services, and so on.

Extensibility and reusability are not limited to the service design level. It goes deep into the
actual API framework level, where software architects should use object-oriented analysis
and design (OOAD) concepts such as inheritance and containership to create an API
framework. This can be extended and reutilized to add more features to the same service.

[68]

Attributes of the Solution Architecture Chapter 3

Usability and accessibility

You want your users to have a seamless experience when browsing through the
application. It should be so smooth that even the users don't notice that they can find things
without any difficulties. You can do this by making your application highly usable. User
research and testing are an essential aspect when it comes to defining usability that can
satisfy user experience.

Usability is how quickly the user can learn navigation logic when using your application
for the first time. It's about how quickly they can bounce back if they make a mistake and
are able to perform the task efficiently. Complex and feature-rich applications have no
meaning if they can't be used effectively.

Often, when you are designing your application, you want to target a global audience or
significant geographic region. Your user base should be diverse in terms of technical
amenities and physical abilities. You want your application to be accessible to everyone,
regardless of whether a user has a slow internet-connection or old devices, or they have
physical limitations.

Accessibility is about inclusion and making your application usable by everyone. While
designing an application, a solution architect needs to make sure it can be accessed over a
slow internet and is compatible with a diverse set of devices. Sometimes, they may have to
create a different version of the application altogether to achieve that.

Accessibility design should include design components such as voice recognition and
voice-based navigation, screen magnifiers, and reading content aloud. Localization helps
the application become available in a language that's specific to a region, for example,
Spanish, Mandarin, German, Hindi, or Japanese.

As shown in the following diagram, customer satisfaction is a component in both usability
and accessibility:

[69]

Attributes of the Solution Architecture Chapter 3

User
Experience

Customer
Usability Satisfaction Accessibility

Customer satisfaction with usability and accessibility

You must know your users to achieve usability and accessibility, where accessibility is a
component of usability, and they both go hand in hand. Before starting the solution design
process, a solution architect should work alongside a product owner to research users by
conducting interviews, and surveys, and gathering feedback on the mock frontend design.
You need to understand the user's limitations and empower them with supporting features
during application development.

When the product is launched, the team should plan for A/B testing by routing a small
portion of user traffic to new features and understanding user reactions. After launch, the
application must have a mechanism to collect continuous feedback (by providing a
feedback form or by launching customer support) to make the design better.

Portability and interoperability

Interoperability is about the ability of one application to work with others through a
standard format or protocol. Often, an application needs to communicate with the various
upstream systems to consume data and downstream systems to supply data, so it is
essential to establish that communication seamlessly.

[70]

Attributes of the Solution Architecture Chapter 3

For example, an e-commerce application needs to work with other applications in the
supply chain management ecosystem. This includes enterprise resource planning
applications to keep a record of all transactions, transportation life cycle management,
shipping companies, order management, warehouse management, and labor management,
and so on.

All applications should be able to exchange data seamlessly to achieve an end-to-end
feature from customer order to delivery. You will encounter similar use cases everywhere,
whether it is a healthcare application, manufacturing application, or telecom application.

A solution architect needs to consider application interoperability during design by
identifying and working with various system dependencies. An interoperable application
saves lots of costs as it depends on systems that can communicate in the same format
without any data messaging effort. Each industry has its standard size for data exchange
that it needs to understand and adhere to.

In general, for software design, the architect may choose a popular format such as JSON or
XML between different applications so that they can communicate with each other. In
modern RESTful API design and microservice architecture, both formats are supported out
of the box.

System portability allows your application to work across different environments without
the need for any changes or with minimal changes. Any software application must work
across various operating systems and hardware to achieve higher usability. Since
technology changes rapidly, you will often see that a new version of a software language,
development platform, or operating system is released. Today, mobile applications are an
integral part of any system design, and your mobile apps need to be compatible with major
mobile operating systems platforms such as iOS, Android, and Windows.

During design, the solution architect needs to choose a technology that can achieve the
desired portability of the application; for example, if you are aiming to deploy your
application across different operating systems. Programming languages such as Java may
be the better choice as it is often supported by all operating systems, and your application
will work on a different platform without needing to be ported across. For mobile
applications, an architect may choose a JavaScript-based language such as React Native,
which can provide cross-platform mobile app development.

Interoperability enriches system extensibility, and portability increases the usability of an
application. Both are critical attributes of an architecture design and may add additional
exponential costs if they're not addressed during solution design. A solution architect needs
to carefully consider both aspects as per industry requirements and system dependencies.

[71]

Attributes of the Solution Architecture Chapter 3

Operational excellence and maintainability

Operational excellence can be a great differentiator for your application by providing an
on-par service to customers with minimal outage and high quality. It also helps the support
and engineering team to increase productivity by applying proactive operational
excellence. Maintainability goes hand in hand with operational excellence. Easily
maintainable applications help reduce costs, avoid errors, and let you gain a competitive
edge.

A solution architect needs to design for operation, which means the design should include
how the workload will be deployed, updated, and operated in the long run. It is essential to
plan for logging, monitoring, and alerting to capture all incident and take quick actions for
the best user experience. Apply automation wherever possible, whether deploying
infrastructures or changing the application code to avoid human error.

Including deployment methods and automation strategy in your design is very important
as this can accelerate the time to market for any new changes without impacting existing
operations. Operation excellence planning should consider security and compliance
elements as regulatory requirements may change over time and your application has to
adhere to them to operate.

Maintenance can be proactive or reactive. For example, once a new version of an operating
system becomes available in the market, you can modernize your application to switch
platforms immediately or monitor system health and wait until the end of the life of the
software before making any changes. In any case, changes should be in small increments
with a rollback strategy. To apply these changes, you can automate the entire process by
setting up the continuous integration and continuous deployment (CI/CD) pipeline. For
the launch, you can plan for A/B deployment or blue-green deployment.

For operational readiness, architecture design should include appropriate documents and
knowledge-sharing mechanisms— for example, creating and maintaining a runbook to
document routine activity and creating a playbook that can guide your system process
through issues. This allows you to act quickly in the event of an incident. You should

use root cause analysis for post incidence to determine why the issue occurred and make sure
it doesn't happen again.

Operational excellence and maintenance are an ongoing effort; every operational event and
failure is an opportunity to learn and help you improve your operation by learning from
previous mistakes. You must analyze the operation's activities and failures, do more
experimenting, and make improvements. You will learn more about performing excellent
consideration in solution design in chapter 10, Operational Excellence Considerations.

[72]

Attributes of the Solution Architecture Chapter 3

Security and compliance

Security is one of the most essential attributes of solution design. Many organizations fail
due to security breaches, which results in a loss in customer trust and an unrecoverable
business loss. Industry-standard regulations such as PCI for finance, HIPPA for health care,
GDPR for European Union, and SOC compliance enforce security to protect consumer data
and provide standard guidance to the organization. Depending on your industry and
region, you must comply with local legislation by adhering to compliance needs. Primarily,
application security needs to be applied in the following aspects of solution design:

Authentication and Authorization

Web security

Network security

Infrastructure security
e Data security

These can be seen in the following diagram:

Infrastructure
Security
Application
Security
Network
Security

Security aspects in solution design

Let's take a look at the different security aspects. You will dive deep into each component in
Chapter 8, Security Considerations.

[73]

Attributes of the Solution Architecture Chapter 3

Authentication and authorization

Authentication means specifying who can access the system and authorization is applied
to activities that a user can perform after getting inside the system or application. Solution
architects must consider the appropriate authentication and authorization system while
creating a solution design. Always start with the least privileged and provide further access
as required by the user role.

If your application is for corporate internal use, you may want to allow access through a
federated organizational system such as Active Directory, SAML 2.0, or LDAP. If your
application is targeting mass user bases such as social media websites or gaming apps, you
can allow them to authenticate through OAuth 2.0 and OpenlID access, where users can
utilize their other IDs such as Facebook, Google, Amazon, and Twitter.

It is important to identify any unauthorized access and take immediate action to mitigate
security threats, which warrants continuously monitoring and auditing the access
management system. You will learn about application security in Chapter 8, Security
Considerations.

Web security

A web application is often exposed to the internet and is more vulnerable to external
attacks. Solution design must consider preventing attacks such as cross-site scripting (XSS)
and SQL injection. These days, the Distributed Denial of Service (DDoS) attack is causing
trouble for organizations. To prevent this, the appropriate tools are required, and an
incident response plan needs to be put in place.

Solution architects should plan to use a Web Application Firewall (WAF) to block malware
and SQL injection attacks. WAF can be used to prevent traffic from a country where you
don't have a user base or to block malicious IP addresses. WAF, in combination with

a Content Distribution Network (CDN), can help to prevent and handle DDoS attacks.

Network security

Network security helps prevent overall IT resources inside an organization and application
being open to external users. Solution design must plan to secure the network, which can
help prevent unauthorized system access, host vulnerabilities, and port scanning.

[74]

Attributes of the Solution Architecture Chapter 3

Solution architects should plan for minimal system exposure by keeping everything behind
a corporate firewall and avoiding internet access wherever possible. For example, the web
server shouldn't be exposed to the internet instead; only the load balancer should be able to
talk to the internet. For network security, plan to utilize an Intrusion Detection System
(IDS) and an Intrusion Prevention System (IPS) and put them in front of network traffic.

Infrastructure security

If you are maintaining your own data center, then the physical security of the infrastructure
is very important if you wish to block physical access to your server on the part of any
unauthorized user. However, if you are leasing the data center or using a private cloud,
then this can be handled by a third-party vendor. Logical access to the server must be
secured by network security, which is done by configuring the appropriate firewall.

Data security

This is one of the most critical components that need to be secured. After all, you are
putting layers of security at the access, web, application, and network layers to secure your
data. Data can be exchanged between two systems, so it need to be secure in transit, or it
may be sitting in a database or some storage where data needs to be secure at rest.

Solution design needs to plan data-in-transit security with Secure Socket Layer/Transport
Layer Security (SSL/TLS) and security certification. Data at rest should be secured using
various encryption mechanisms, which may be symmetric or asymmetric. The design
should also plan to secure the encryption key with the right key management approach, as
per application requirements. Key management can be achieved using a hardware security
module or services provided by cloud vendors.

While ensuring security, it is essential to have a mechanism to identify any security breach
as soon as it occurs and respond to it. Adding automation to every layer to monitor, and get
an immediate alert for, any violation must be part of the solution design. DevSecOps is
becoming a trend in most organizations since it applies best practices to automating
security needs and security responses during the software development life cycle. You will
learn more about DevSecOps in chapter 12, DevOps and Solution Architecture Framework.

[75]

Attributes of the Solution Architecture Chapter 3

To adhere to compliance with the local legislation, solution design needs to include an
audit mechanism. For finance, regulatory compliance such as Payment Card Industry Data
Security Standard (PCI DSS) is strictly required to gain the log trails of every transaction
in the system, which means all activity needs to be logged and sent to the auditor when
required. Any Personal Identifiable Information (PII) data, such as customer email IDs,
phone numbers, and credit card numbers needs to be secured by applying encryption and
limited access for any application storing PII data.

In on-premise environments, it is the customer's responsibility to secure the infrastructure
and application and also to get certification for compliance. However, in the public cloud,
environments such as AWS ease this burden since infrastructure security and compliance
are taken care by a cloud vendor. The customer shares responsibility for the security of the
application and make sure it's compliant by completing the required audit.

Cost optimization and budget

Every solution is limited by budget and investors look for maximal ROI. The solution
architect needs to consider cost-saving during architecture design. Cost should be
optimized from pilot creation to solution implementation and launch. Cost optimization is
a continuous effort and should be continuous process. Like any other constraint, cost-
saving comes with a trade-off; it should make a point of determining whether other
components such as the speed of delivery and performance are more critical.

Often, cost increases due to over-provision resources and overlooks the cost of
procurement. The solution architect needs to plan optimal resources to avoid excessive
underutilization. At the organization level, there should be an automated mechanism to
detect ghost resources, which team members may create dev and test environments, and it
may no longer be in use after completion of the implementation task. Often, those ghost
resources go unnoticed and cause costs to overrun. Organizations need to keep a record of
their inventory by applying automated discovery.

During technology selection, it's essential to evaluate build versus source cost. Sometimes, it's
better to use a third-party tool when your organization doesn't have the expertise and the
cost of the build will be high, for example, by sourcing log analysis and business
intelligence tools. Also, we need to determine the ease of learning and the complexity of
implementation when selecting a technology for solution implementation. From an IT
infrastructure perspective, we need to evaluate capital expenditure versus operation
expenditures as maintaining a data center requires high capital investment upfront to meet
unforeseen scaling demands. Since multiple choices are available, solution architects can
select options from the following— public cloud, private cloud, and multi-cloud.
Alternatively they can take a hybrid approach.

[76]

Attributes of the Solution Architecture Chapter 3

Like all components, cost needs to be automated and alerts need to be set up against budget
consumption. Cost needs to be planned and divided between the organizational unit and
the workload so that responsibilities can be shared with all groups. The team needs to
continuously look at cost optimization by optimizing operation support and workload as
more historical data is collected.

Summary

In this chapter, you learned about various solution architecture attributes that need to be
considered while creating a solution design. You learned about two modes of scalability,
vertical and horizontal, and how to scale various layers of the architecture, including the
web layer, application servers, and databases.

You also learned how to apply elasticity in your workload using autoscaling so that it can
grow and shrink on demand. This chapter provided insights into designing a resilient
architecture and the methods to achieve high availability. Furthermore, this helped you
understand fault tolerance and redundancy so that you can make your application
performant, as per your user's expectations, and plan for disaster recovery for the
continuation of your business in the case of any unforeseen events.

Then, you learned about the importance of making your architecture extendable and
accessible and how architecture portability and interoperability help reduce costs and
increase the adoption of your application. This chapter ended with how to apply
operational excellence, security, and cost to every layer of your architecture and how those
attributes should be considered right from the beginning of the solution design

process. You will look at each component in more detail later in this book.

In the next chapter, you will learn about the principle of solution architecture design, which
will focus on how to design the solution architecture while bearing in mind various
attributes that were explained in this chapter.

[77]

Principles of Solution
Architecture Design

In the previous chapter, you learned about the attributes of solution architecture. Those
attributes are essential properties, which a solution architect needs to keep in mind while
creating a solution design. In this chapter, you will learn about the principles of solution
architecture design, which incorporate various attributes during solution design.

This chapter throws light on the most important and common design principles. However,
there could be more design aspects based on the nature of the product complexity and
industry domain. As you move forward to your learning path of becoming a solution
architect in this book, these design principles and attributes will be further applied in order
to create various design patterns in Chapter 6, Solution Architecture Design Patterns.

You will learn about the following topics in this chapter:

e Scaling workload

e Building resilient architecture
e Design for performance

¢ Using replaceable resources

e Think loose coupling

¢ Think service not server

e Using the right storage for the right need
¢ Think data-driven design

e Overcoming constraints

¢ Adding security everywhere
e Automating everything

Principles of Solution Architecture Design Chapter 4

In this chapter, you will not only learn about designing scalable, resilient, and performance
architecture, but you will also learn how to take care of your architecture by applying
security, overcoming constraints, and applying changes along with the test and automation
approach. These principles will help you to apply thinking in the right way, by using
service-oriented architecture (SOA) and a data-driven approach.

Scaling workload

In the Scalability and elasticity section of Chapter 3, Attributes of the Solution Architecture, you
learned about different modes of scaling and how to scale static content, a server fleet, and
a database at a high level. Now, let's look at various types of scaling that can be used to
handle workload spikes.

Scaling could be predictive if you are aware of your workload, which is often the case; or it
could be reactive if you get a sudden spike or if you have never handled that kind of load
before. Regardless of scaling being reactive or predictive, you need to monitor the
application and collect the data in order to plan your scaling needs accordingly. Let's dive
deep into these patterns with examples.

Predictive scaling

Predictive scaling is the best-case approach that any organization wants to take. Often, you
can collect historical data of application workload, for example, an e-commerce website
such as Amazon may have a sudden traffic spike, and you need predictive scaling to avoid
any latency issues. Traffic patterns may include the following:

e Weekends have three times more traffic than a weekday.

¢ Daytime has five times more traffic than at night.

¢ Shopping seasons, such as Thanksgiving or Boxing Day, have 20 times more
traffic than regular days.

e Overall, the holiday season in November and December has 8 to 10 times more
traffic than during other months.

You may have collected the previous data based on monitoring tools that are in place to
intercept the user's traffic, and based on this, you can make a prediction for scaling. Scaling
may include planning to add more servers when workload increases, or to add additional
caching. This example of an e-commerce workload is one that tends toward higher
complexity and provides lots of data points to help us to understand overall design issues.
For such complex workloads, predictive scaling becomes more relevant.

[79]

Principles of Solution Architecture Design Chapter 4

Predictive auto-scaling is becoming very popular, where historical data and trends can be
fed to prediction algorithms, and you can predict in advance how much workload is

expected at a given time. Using this expected data, you can set up the configuration to scale
your application.

To better understand predictive auto-scaling, look at the following metrics dashboard from
the AWS predictive auto-scaling feature. This graph has captured historical CPU utilization
data of the server, and based on that, has provided the forecasted CPU utilization:

Predictive scaling forecasts and scheduled actions o

Predictive scaling mode Forecast period Forecast granularity
Forecast and scale 2 days 60 minutes

Load metric Manx capacity behavior Scheduled action buffer time
Total CPU utilization Set forecast capacity to max capacity 300 seconds

Load (Total CPU utilization)

Forecast period

20,0k

15.0k

10.0k

5.0k

0.0k

12PM Wed14 12PM Thul5 12PM Fril6é 12PM Sat17 12PM Novi1E 12PM Mon19 12PM Tue2d 12PM Wed21 12PM Thu22

Capacity (Instance count) @ Actual load @ Load forecast @ Next forecast time

15 Forecast period

10

s M | 1] i
I Ul

12PM Wed14 12PM Thul5 12PM Fril6 12PM Sat17 12PM Nov18 12PM Mon19 12PM Tue20 12PM Wed21 12PM Thu22

@ Actual capacity @ Capacity forecast @ Next forecast time

Predictive scaling forecast

[80]

Principles of Solution Architecture Design Chapter 4

In the following screenshot, an algorithm is suggesting how much minimum capacity you
should plan in order to handle the traffic, based on the forecast:

Scheduled scaling actions (32)
Q £ 1 2 3 4 >
Start time Y Min capacity v Max capacity L
2818-11-28 9B:55:88 UTC-8888 7 15
2018-11-20 ©9:55:00 UTC-8808 9 15
2818-11-28 11:88:88 UTC-8828 9 15
20818-11-20 12:00:00 UTC-8808 9 15
2018-11-20 13:00:00 UTC-6808 8 15
2018-11-28 14:00:00 UTC-8800 7 15
2018-11-20 15:00:00 UTC-68080 s 15
28018-11-20 16:00:00 UTC-8800 3 15
2018-11-20 17:90:00 UTC-8800 2z 15
2018-11-20 18:08:00 UTC-0808 2 15

Predictive scaling capacity plan

You can see that there is a variation in the minimum capacity at different times of the day.
Predictive scaling helps you to best optimize your workload based on

predictions. Predictive auto-scaling helps to reduce latency and avoid an outage, as adding
new resources may take some time. If there is a delay in adding additional resources to
handle website traffic spikes, it may cause a request flood and false high traffic, as users
tend to send a repeated request when they encounter slowness or outages.

In this section, you learned about predictive auto-scaling, but sometimes, due to a sudden
spike in the workload, you need reactive scaling. We will learn about this in the next
section.

[81]

Principles of Solution Architecture Design Chapter 4

Reactive scaling

With the use of a machine learning algorithm, predictive scaling is getting more accurate,
but you have to deal with sudden traffic spikes, and depend upon reactive scaling. This
unexpected traffic that may come could be even 10 times the regular traffic; this usually
happens due to a sudden demand or, for example, due to a first attempt to run sales events,
where we're not sure about the amount of incoming traffic.

Let's take an example where you are launching a flash deal on your e-commerce website.
You will have a large amount of traffic on your home page, and from there, the user will go
to the flash deal product-specific page. Some users may want to buy the product; therefore,
they will go to the add to cart page.

In this scenario, each page will have a different traffic pattern, and you will need to
understand your existing architecture and traffic patterns, along with an estimate of the
desired traffic. You also need to understand the navigation path of the website. For
example, the user has to log in to buy a product, which can lead to more traffic on the login

page.

In order to plan for the scaling of your server resources for traffic handling, you need to
determine the following patterns:

e Determine web pages, which are read-only and can be cached.

e Which user queries need just to read that data, rather than write or update
anything in the database?

¢ Does a user query frequently, requesting the same or repeated data, such as their
own user profile?

Once you understand these patterns, you can plan to offload your architecture in order to
handle excessive traffic. To offload your web-layer traffic, you can move static content, such
as images and videos, to content distribution networks from your web server. You will
learn more about the Cache Distribution pattern in Chapter 6, Solution Architecture Design
Patterns.

At the server fleet level, you need to use a load balancer in order to distribute traffic, and
you need to use auto-scaling to increase or shrink several servers in order to apply
horizontal scaling. To reduce the database load, use the right database for the right need—a
NoSQL database to store user sessions and review comments, a relational database for the
transaction, and apply caching to store frequent queries.

[82]

Principles of Solution Architecture Design Chapter 4

In this section, you learned about the scaling patterns and methods that are used to handle
the scaling needs of your application in the form of predictive scaling and reactive scaling. In
Chapter 6, Solution Architecture Design Patterns, you will learn about the details of the
different types of design patterns, and how to apply them in order to be able to scale your
architecture.

Building resilient architecture

Design for failure, and nothing will fail. Having a resilient architecture means that your
application should be available for customers while also recovering from failure. Making
your architecture resilient includes applying best practices in every aspect, in order to make
your application recoverable. Resiliency needs to be used in all layers of architecture,
including infrastructure, application, database, security, and networking.

From the security perspective, the Distributed Denial of Service (DDoS) attack has the
potential to impact the availability of services and applications. The DDoS attack usually
puts fake traffic in your server and makes it busy, therefore, legitimate users are unable to
access your application. This can happen at the network layer or the application layer. You
will learn more about DDoS attack and mitigation in chapter 8, Security Considerations.

It's essential to take a proactive approach to prevent DDoS attacks. The first rule is to keep
as much as application workload possible in the private networks and not expose your
application endpoints to the internet wherever possible. To take early action, it is essential
to know your regular traffic and have a mechanism in place to determine substantial
suspicious traffic at the application and network packet levels.

Exposing your application through the content distribution network (CDN) will provide
the inbuilt capability and adding the Web Application Firewall (WAF) rule can help to
prevent unwanted traffic. Scaling should be your last resort but be ready with an auto-
scaling mechanism to enable you to scale your server in the case of such an event.

To achieve resiliency at the application level, the first thing that comes to mind is
redundancy, which leads to making your application highly available by spreading the
workload across the geographic location. To achieve redundancy, you can have a duplicate
server fleet at a different rack in the same data center and in a different region. If servers are
spread across different physical locations, the first level of traffic routing can be handled
using the Domain Name System (DNS) before it reaches the load balancer:

[83]

Principles of Solution Architecture Design Chapter 4

O—ds——
g- DNS Server
User Website ‘
CDN Network
Region Region
; o 5 ; o
Load Balancer _){3(_ : 5 Load Balancer _){3(_
! 4 ! | v
Autoscaling Autoscaling
S:erver Fleet i
| | Server Fleet H
| -— :
| i Standby Database
. Master Database i

Application architecture resiliency

As you can see in the preceding architecture, resiliency needs to be applied in all the critical
layers that affect the application's availability to implement the design of failure. To
achieve resiliency, the following best practices need to be applied in order to create a
redundant environment:

Use the DNS server to route traffic between different physical locations so that your
application will still be able to run in the case of entire region failure.

Use the CDN to distribute and cache static content such as videos, images, and
static web pages near the user location, so that your application will still be
available in case of a DDoS attack or local point of presence (PoP) location
failure.

Once traffic reaches a region, use a load balancer to route traffic to a fleet of
servers so that your application should still be able to run even if one location
fails within your region.

Use auto-scaling to add or remove servers based on user demand. As a result,
your application should not get impacted by individual server failure.

Create a standby database to endure the high availability of the database,

meaning that your application should be available in the instance of a database
failure.

[84]

Principles of Solution Architecture Design Chapter 4

In the preceding architecture, if any components fail, you should have a backup to recover
it and achieve architecture resiliency. The load balancer and routers at the DNS server
perform a health check to make sure that the traffic is routed to only healthy application
instances. You can configure this to perform a shallow health check, which monitors local
host failures; or deep health checks, which can also take care of dependency failure.
However, a deep health check takes more time and is more resource-intensive than to the
shallow health check.

At the application level, it is essential to avoid cascading failure, where the failure of one
component can bring down the entire system. There are different mechanisms available to
handle cascading, such as applying timeout, traffic rejection, implementing the idempotent
operation, and using circuit-breaking patterns. You will learn more about these patterns in
Chapter 6, Solution Architecture Design Patterns.

Design for performance

With the availability of fast internet, customers are seeking high-performant applications
with minimal load time. Organizations have noticed that a direct revenue impact is
proportional to application performance, and slowness in application load time can
significantly impact customer engagement. Modern-era companies are setting a high
expectation when it comes to performance, which results in high-performant applications
becoming a necessity in order to stay in the market.

Like resiliency, the solution architect needs to consider performance at every layer of
architecture design. The team needs to put monitoring in place to continue to perform
effectively, and work to improve upon it continuously. Better performance means more
user engagements and increases in return on investment—high-performance applications
are designed to handle application slowness due to external factors such as a slow internet
connection. For example, you may have designed your blog web page to load within 500
milliseconds where there is good internet availability. However, in cases of a slow internet,
you can load text and engage the user while images and videos are still loading.

In an ideal environment, as your application workload increases, automated scaling
mechanisms start handling additional requests without impacting upon application
performance. But in the real world, your application latency goes down for duration when
scaling takes effect. In a real-world situation, it's better to test your application for
performance by increasing the load and understand if you can achieve the desired
concurrency and user experience.

[85]

Principles of Solution Architecture Design Chapter 4

At the server level, you need to choose the right kind of server depending upon your
workload. For example, choose the right amount of memory and compute to handle the
workload, as memory congestion can slow down application performance, and eventually,
the server may crash. For storage, it is important to choose the right input/output
operations per second (IOPS). For write-intensive applications, you need high IOPS to
reduce latency and to increase disk write speed.

To achieve great performance, apply caching at every layer of your architecture design.
Caching makes your data locally available to the users or keeps data in-memory in order to
serve an ultra-fast response. The following are the considerations that are required to add
caching to various layers of your application design:

¢ Use browser cache on the user's system to load frequently requested web pages.
¢ Use the DNS cache for quick website lookup.

e Use the CDN cache for high-resolution images and videos that are near to the
user's location.

o At the server level, maximize the memory cache to serve user requests.

¢ Use cache engines such as Redis and Memcached to serve frequent queries from
the caching engine.

¢ Use the database cache to serve frequent queries from memory.
¢ Take care of cache expiration and cache eviction at every layer.

As you can see, keeping your application performant is one of the essential design aspects
and is directly related to organization profitability. The solution architect needs to think
about performance when creating solution design and should work relentlessly to keep
improving the performance of the application.

You will learn more about different caching patterns in chapter 6, Solution Architecture
Design Patterns. Performance is a critical factor, and in chapter 7, Performance
Considerations, you will dive deep further to learn techniques to optimize your application
for better performance.

Using replaceable resources

Organizations make a significant capital investment in hardware, and they develop the
practice of updating them with a new version of the application and configuration. Over
time, this leads to different servers running in varied configurations, and troubleshooting
them becomes a very tedious task. Sometimes, you have to keep running unnecessary
resources when they are not needed, as you are not sure which server to shut down.

[86]

Principles of Solution Architecture Design Chapter 4

The inability to replace servers makes it challenging to roll out and test any new updates in
your server fleet. These problems can be solved by treating your server as a replaceable
resource, which enables you to move more quickly to accommodate changes such as
upgrading applications and underlying software.

That is why, while designing your application, always think of immutable infrastructure.

Creating immutable infrastructure

Immutable means, during application upgrades, you will not only replace software, but
hardware too. Organizations make a significant capital investment in hardware and
develop the practice of updating them with a new version of the application and
configuration.

To create replaceable servers, you need to make your application stateless and avoid the
hardcoding of any server IP or database DNS name. Basically, you need to apply the idea of
treating your infrastructure as software instead of hardware, and not apply updates to the
live system. You should always spin up new server instances from the golden machine
image, which has all necessary security and software in place.

Creating immutable infrastructure becomes comfortable with the use of a virtual machine,
where you can create a golden image of your virtual machine and deploy it with the new
version, rather than trying to update an existing version. This deployment strategy is also
beneficial for troubleshooting, where you can dispose the server that has an issue and spin
up a new server from a golden image. You should take a backup of logs for root cause
analysis before disposing the server with issues. This approach also ensures consistency
across the environment, as you are using the same baseline server image to create all of
your environment.

Canary testing

Canary testing is one of the popular methods that is used to apply rolling deployment with
immutable infrastructure. It helps you to ensure that old-version production servers are
replaced safely with new servers, without impacting the end users. In canary testing, you
deploy your software update in a new server and route a small amount of traffic to it.

If everything goes well, you will keep increasing traffic by adding more new servers, while
disposing the old servers. Canary deployment gives you a safe option to push your changes
in the live production environment. If something goes wrong, only small numbers of users
are impacted, and you have the option of immediate recovery by routing traffic back to old
servers.

[871]

Principles of Solution Architecture Design Chapter 4

The solution architect needs to think ahead to use replaceable resources for deployment.
They need to plan session management and avoid server dependency on hardcoded
resources ahead of time. Always treat resources as replaceable and design your
applications to support changes in hardware.

The solution architect needs to set a standard to use various rolling deployment strategies,
such as A/B testing or Blue/Green deployment. Treat your server like cattle, not like a pet;
when this principle is applied to the replacement of problematic IT resources, quick
recovery is ensured, and troubleshooting time reduced.

Think loose coupling

A traditional application builds a tightly integrated server, where each server has a specific
responsibility. Applications depend upon other servers for completeness of functionality.
As shown in the following diagram, in a tightly coupled application, the web server fleet
has a direct dependency on all application servers, and vice versa:

Web Server Fleet

Application Server fleet

Tightly coupled architecture

In the preceding architecture diagram, if one application server goes down, then all web
servers will start receiving errors, as the request will route to an unhealthy application
server, which may cause a complete system failure. In this case, if you want to scale by
adding and removing servers, it requires lots of work, as all connections need to be set up
appropriately.

[881]

Principles of Solution Architecture Design Chapter 4

With loose coupling, you can add an intermediate layer such as a load balancer or a queue,
which automatically handles failures or scaling for you. In the following architecture
diagram, there is a load balancer between the web server and the application server fleet,
which makes sure to always serve user requests from a healthy application server:

Web Server Fleet

EEEREER

<

e Load Balancer

= EE EfE EIE

Application Server fleet

Load balancer-based loosely coupled architecture

If one of the application servers goes down, the load balancer will automatically start
directing all the traffic to the other three healthy servers. Loosely coupled architecture also
helps you to scale your servers independently and replace unhealthy instances gracefully. It
makes your application more fault tolerant as an error radius is limited to a single instance
only.

For queue-based loosely coupled architecture, take an example of an image-processing
website, where you need to store an image, and then process it for encoding, thumbnail,
and copyright. The following architecture diagram has a queue-based decoupling. You can
achieve loose coupling of systems by using queues between systems and exchanging
messages that transfer jobs:

[891]

Principles of Solution Architecture Design Chapter 4

Thumbnail
Generation

Copyright
put Waterrnark

Image
encoding

get

Queue Queue Queue

Queue-based loosely coupled architecture

Queue-based decoupling enables asynchronous linking of systems, where one server is not
waiting for a response from another server and it is working independently. This method
lets you increase the number of virtual servers that receive and process the messages in
parallel. If there is no image to process, you can configure auto-scaling in order to terminate
the excess servers.

In a complex system, a loosely coupled architecture is achieved by creating a service-
oriented architecture (SOA), where independent services contain a complete set of
functionalities and communicate with each other over a standard protocol. In modern
design, microservice architecture is becoming highly popular, which facilitates the
decoupling of an application component. The loosely coupled design has many benefits,
from providing scalability and high availability, to ease of integration.

In the next section, you will learn more about SOA, and you will also dive deep into the
details of this topic in chapter 6, Solution Architecture Design Pattern.

Think service not server

In the previous section, you learned about loose coupling and how important it is for our
architecture to be loosely coupled for scalability and fault-tolerance. Developing service-
oriented thinking will help to achieve a loosely coupled architecture (as opposed to a
server-oriented design, which can lead to hardware dependency and a tightly coupled
architecture). SOA helps us to achieve ease of deployment and maintenance for your
solution design.

[90]

Principles of Solution Architecture Design Chapter 4

When it comes to service-oriented thinking, solution architects always gear towards SOA.
The two most popular SOAs are based on Simple Object Access Protocol (SOAP) services
and RESTful services. In SOAP-based architecture, you format your message in XML and
send it over the internet using the SOAP protocol, which builds on top of the HTTP.

In RESTful architecture, you can format a message in XML, JSON, or plain text, and send it
over a simple HTTP. However, RESTful architecture is comparatively more popular, as it is
very lightweight and much more straightforward than SOAP.

When talking about SOA nowadays, microservice architecture is increasingly popular.
Microservices are independently scalable, which makes it easier to expand or shrink one
component of your application without impacting others. As you can see in the following
diagram, in a monolithic architecture, all components are built in a single server and tied
up with a single database, which creates a hard dependency, whereas, in a microservice
architecture, each component is independent with their framework and database, which
allows them to be scaled independently:

Manelithic Architecture Micro-service Architecture

Login Service Crder Service

Server contents @ ey

. .
N i

| =

oo
[-1-1} Can
Rating and Review

Inventory

Cart
BE Service

oo IDI
Database Rating and Review
Senvice Inventory
Service

Monolithic to the microservice architecture

In the preceding diagram, you can see an example of an e-commerce website, where
customers can log in and place an order, assuming the items they want are available, by
adding items to the cart. To convert a monolithic architecture to a microservice-based
architecture, you can create applications that are made of small independent components,
which constitute smaller parts to iterate.

[91]

Principles of Solution Architecture Design Chapter 4

Taking the modularization approach means that the cost, size, and risk of change reduces. In the
preceding case, each component is created as a service. Here, the Login Service can
independently scale to handle more traffic, as the customer may log in frequently to explore
the product catalog and order status, while the Order Service and the Cart Service may
have less traffic, as a customer may not place the order very often.

Solution architects need to think of SOA while designing a solution. The clear advantage of
services is that you have a smaller surface area of code to maintain and services are self-
contained. You can build them with no external dependencies. All prerequisites are
included in the service, which enables loose coupling, scaling, and reduces the blast radius
in case of failure.

Using the right storage for the right need

For decades, organizations have been using a traditional relational database and trying to
fit everything there, whether it is key/value-based user session data, unstructured log data,
or analytics data for a data warehouse. However, the truth is, the relational database is
meant for transaction data, and it doesn't work very well for other data types—it's like
using a Swiss Army knife, which has multiple tools that work but to a limited capacity; if
you want to build a house, then the screwdriver will not be able to perform a heavy lift.
Similarly, for specific data needs, you should choose the right tool that can do the heavy
lifting, and scale without compromising performance.

Solution architects need to consider multiple factors while choosing the data storage to
match the right technology. Here are the important ones:

¢ Durability requirement: How should data be stored to prevent data corruption?
e Data availability: Which data storage system should be available to deliver data?
¢ Latency requirement: How fast should the data be available?

¢ Data throughput: What is the data read and write need?

¢ Data size: What is the data storage requirement?

¢ Data load: How many concurrent users need to be supported?

¢ Data integrity: How to maintain the accuracy and consistency of data?

¢ Data queries: What will be the nature of queries?

[92]

Principles of Solution Architecture Design

Chapter 4

In the following table, you can see different types of data with examples and appropriate
storage types to use. Technology decisions need to be made based on storage type, as

shown here:

Data Type

Data Example

Storage Type

Storage Example

Transactional, structured schema

User order data, financial transaction

Relational database

Amazon RDS, Oracle, MySQL,
PostgreSQL, MariaDB
Microsoft SQL Server

Key-value pair, semi-structured,
unstructured

User session data, application log, review,
comments

NoSQL

Amazon DynamoDB, MongoDB,
|Apache HBase, Apache Cassandra, Azure
Tables,

Sales data, Supply chain intelligence,

IBM Netezza, Amazon Redshift,

Analytics . Data warehouse Teradata, Greenplum, Google
Business flow X

BigQuery

In-memory User home page data, common dashboard ~ [Cache Redis cache, Amazon ElastiCache,
Memcached

. .) SAN, Amazon S3, Azure Blob

Object Image, video File-based Storage, Google Storage

Block Installable software Block-based NAS, Amazon EBS, Amazon EFS,
Azure Disk Storage

. . Temporary storage for Apache Kafka, Amazon Kinesis,
Streaming loT sensor data, clickstream data streaming data Spark Streaming, Apache Flink
Archive Any kind of data Archive storage Amazon Glacier, magnetic tape storage,

virtual tape library storage

Web storage

Static web contents such as images, videos,
HTML pages

CDN

Amazon CloudFront, Akamai CDN, Azure
ICDN, Google CDN, Cloudflare

Search

Product search, content search

Search index store and
query

Amazon Elastic Search, Apache Solr,
Apache Lucene

Data catalog

Table metadata, data about data

Meta-data store

AWS Glue, Hive metastore, Informatica data
catalog, Collibra data catalog

Monitoring

System log, network log, audit log

Monitor dashboard and

alert

Splunk, Amazon CloudWatch,

SumoLogic, Loggly

As you can see in the preceding table, there are various properties of data, such as
structured, semi-structured, unstructured, key-value pair, streaming, and so on. Choosing
the right storage helps to improve not only the performance of the application, but also its
scalability. For example, you can store user session data in the NoSQL database, which will
allow application servers to scale horizontally and maintain user sessions at the same time.

While choosing storage options, you need to consider the temperature of the data, which
could be hot, warm, or cold:

e For hot data, you are looking for sub-millisecond latency and required cache data
storage. Some examples of hot data are stock trading and making product
recommendations in runtime.

e For warm data, such as financial statement preparation or product performance
reporting, you can live with the right amount of latency, from seconds to
minutes, and you should use a data warehouse or a relational database.

e For cold data, such as storing 3 years of financial records for audit purposes, you
can plan latency in hours, and store it in archive storage.

[93]

Principles of Solution Architecture Design Chapter 4

Choosing the appropriate storage, as per the data temperature also saves costs in addition
to achieving performance SLA. As any solution design revolves around handling the data,
so a solution architect always needs to understand their data thoroughly and then choose
the right technology.

In this section, we have covered a high-level view of data in order to get the idea of using
the proper storage, as per data nature. You will learn more about data engineering in
Chapter 13, Data Engineering and Machine Learning. Using the right tool for the right job
helps to save costs and improve performance, so it's essential to choose the right data
storage for the right need.

Think data-driven design

Any software solution revolves around the collection and management of data. Take the
example of an e-commerce website; the software application is built to showcase product
data on the website and encourage the customers to buy them. It starts by collecting
customer data when they create a login, adding a payment method, store order
transactions, and maintaining inventory data as the product gets sold. Another example is a
banking application, which is about storing customer financial information and handling
all financial transaction data with integrity and consistency. For any application, the most
important thing is to handle, store, and secure data appropriately.

In the previous section, you have learned about different kinds of data types, along with
the storage needs, which should help you to apply data thinking in your design. Solution
design is heavily influenced by data and enables you to apply the right design-

driven solution by keeping data in mind. While designing a solution, if your application
needs ultra-low latency, then you need to use cache storage such as Redis and Memcached.
If your website needs to improve its page load time with an attractive high-quality image,
then you need to use a content distribution network such as Amazon CloudFront or
Akamai to store data near the user location. Similarly, to improve your application
performance, you need to understand if your database will be read-heavy (such as a blog
website) or write-heavy (such as survey collection) and plan your design accordingly.

It's not just application design, but operational maintenance and business decisions all
revolves around data. You need to add monitoring capabilities to make sure that your
application, and in turn, your business, is running without any issues. For application
monitoring, you collect log data from the server and create a dashboard to visualize the
metrics.

[94]

Principles of Solution Architecture Design Chapter 4

Continuous data monitoring and sending alerts in the case of issues helps you to recover
quickly from failure, by triggering the auto-healing mechanism. From a business
perspective, collecting sales data helps you to run a marketing campaign to increase the
overall business revenue. Analyzing review sentiments data helps to improve the customer
experience and retain more customers, which is critical for any business. Collecting overall
order data and feeding to the machine learning algorithm helps you to forecast future
growth and maintains the desired inventory.

As a solution architect, you are not only thinking about application design, but also about
overall business value proposition. It's about other factors around the application, which
can help to increase customer satisfaction and maximize the return on your investment.
Data is gold and getting insights into data can make a tremendous difference to an
organization's profitability.

Overcoming constraints

Earlier, in chapter 2, Solution Architect in an Organization, you learned about the various
constraints that a solution architecture needs to handle and balance. The major limitations
are cost, time, budget, scope, schedule, and resources. Overcoming with these constraints is
one of the significant factors that needs to be considered while designing a solution. You
should look at the limitations as challenges that can be overcome rather than obstacles, as
challenges always push you to the limit for innovation in a positive way.

For a successful solution, always put the customer first, while also taking care of
architectural constraints. Think backward from the customers' needs, determine what is
critical for them, and plan to put your solution delivery in an agile way. One popular
method of prioritized requirement is MoSCoW, where you divide customer requirements
into the following categories:

e Mo (Must have): Requirements that are very critical for your customers, without
which the product cannot launch.

¢ S (Should have): Requirements that are the most desirable to the customer, once
they start utilizing the application.

¢ Co (Could have): Requirements that are nice to have, but their absence will not
impact upon the desired functionality of the application.

e W (Won't have): Requirements that customers may not notice if it is not there.

[95]

Principles of Solution Architecture Design Chapter 4

You need to plan a minimum viable product (MVP) for your customer with must-have
(Mo) requirements and go for the next iteration of delivery with should-have (S)
requirements. With this phased delivery approach, you can thoroughly utilize your
resources and overcome the challenges of time, budget, scope, and resources. The MVP
approach helps you to determine customer needs. You are not trying to build everything
without knowing if the features you've built have added value for the customer. This
customer-focused approach helps to utilize resources wisely and reduces the waste of
resources.

In the following diagram, you can see the evaluation for a truck manufacturing delivery,
where the customer wants a delivery truck that gets delivered initially, and you evolve the
process based on the customer's requirements:

=1 |
) = — i —

MVP approach to building the solution

Here, once a customer gets a first delivery truck, which is a full functioning, they can
determine if they need a more significant load to handle, and based on that, the
manufacturer can build a six-wheel, a 10-wheel, and finally an 18-wheel truck trailer. This
stepwise approach provides working products with essential features that the customers
can use, and the team can build upon it, as per the customer requirement.

Technology constraints become evident in a large organization, as bringing changes across
hundreds of systems will be challenging. When designing applications, you need to use the
most common technique that is used across the organization, which will help to remove the
everyday challenges. You also need to make sure that the application is upgradable in
order to adopt new technology, and able to plug in components that are built in a different
platform.

A RESTful service model is pretty popular when teams are free to use any technology for
their development, the only thing they need to provide is a URL with which their services
can be accessed. Even legacy systems such as mainframes can be integrated into the new
system using an API wrapper around it and overcome technology challenges.

You can see how the MVP approach helps to utilize limited resources in an efficient way,
which helps to buy more time and clarify the scope. In terms of the other factors, when you
put the working product in the customer's hands early, it gives you an idea of where to
invest. As your application has already started generating revenue, you can present use
cases to ask for more resources, as required.

[961]

Principles of Solution Architecture Design Chapter 4

Taking an agile approach helps you to overcome various constraints and build a customer-
centric product. In design principles, take everything as a challenge and not an obstacle.
Consider any constraint as a challenge and find a solution to solve it.

Adding security everywhere

Security is one of the essential aspects of solution design; any gap in security can have a
devastating effect on business and the organization's future. The security aspect can have a
significant impact on solution design, so you need to understand your security needs even
before starting the application design. Security needs to include in platform readiness at the
hardware level and in application development at the software level. The following are the
security aspects that need to be considered during the design phase:

¢ Physical security of data center: All IT resources in data centers should be secure
from unauthorized access.

¢ Network security: The network should be secure to prevent any unauthorized
server access.

e Identity and Access Management (IAM): Only authenticated users should have
access to the application, and they can do the activity as per their authorization.

¢ Data security in-transit: Data should be secure while traveling over the network
or the internet.

¢ Data security at rest: Data should be secure while stored in the database or any
other storage.

¢ Security monitoring: Any security incident should be captured, and the team
alerted to act.

Application design needs to balance security requirements such as encryption, and other
factors such as performance and latency. Data encryption always has a performance impact
as it adds a layer of additional processing because data needs to be decrypted in order to be
utilized. Your application needs to accommodate the overhead of additional encryption
processing without impacting overall performance. So, while designing your application,
think of use cases where encryption is really required. For example, if the data is not
confidential, you don't need to encrypt it.

The other aspect of application design to consider is regulatory compliance for adherence to
local law. Compliance is essential if your application belongs to a regulated industry such
as health care, finance, or federal government. Each compliance has its requirement, which
commonly includes the protection of data and the recording of each activity for audit
purposes. Your application design should build comprehensive logging, and ensure
through monitoring, which will fulfill the audit requirement.

[97]

Principles of Solution Architecture Design Chapter 4

In this section, you have learned to apply security thinking while designing and keeping
any regulatory needs in mind. Security automation is another factor, which you should
always implement along with your design, in order to reduce and mitigate any security
incidence. However, you have a high-level overview here. You will learn more details in
Chapter 8, Security Considerations.

Automating everything

Most accidents happen due to human error, which can be avoided by automation.
Automation not only handles jobs efficiently, but also increases productivity and saves
costs. Anything identified as a repeatable task should be automated to free up valuable
human resources so that team members can spend their time on more exciting work and
focus on solving a real problem. It also helps to increase team morale.

When designing a solution, think about what can be automated. Consider the following
components to be automated in your solution:

e Application testing: You need to test your application every time you make any
changes to make sure that nothing breaks. Also, manual testing is very time
consuming and requires lots of resources. It's better to think about automating
repeatable test cases to speed up deployment and product launch. Automate
your testing at production scale and use rolling deployment techniques, such as
canary testing and A/B testing, to release changes.

e IT infrastructure: You can automate your infrastructure by using infrastructure as
code scripting, for example, Ansible, Terraform, and Amazon CloudFormation.
Automation of infrastructure allows environments to be created in minutes
compared to days. Automation of infrastructure as code helps to avoid
configuration errors and creates a replica of the environment.

¢ Logging, monitoring, and alerting: Monitoring is a critical component, and you
want to monitor everything every time. Also, based on monitoring, you may
want to take automated action such as scaling up your system or alerting your
team to act. You can monitor the vast system only by using automation. You
need to automate all activity monitoring and logs in order to make sure that your
application is running smoothly, and that it is functioning as desired.

[981]

Principles of Solution Architecture Design Chapter 4

¢ Deployment automation: Deployment is a repeatable task that is very time
consuming and delays the last-minute launch in many real-time scenarios.
Automating your deployment pipeline by applying continuous integration and
continuous deployment helps you to be agile and iterate quickly on product
features with a frequent launch. Continuous deployment and continuous
integration help you to make small incremental changes to your application.

¢ Security automation: While automating everything, don't forget to add
automation for security. If someone is trying to hack your application, you want
to know immediately and act quickly. You want to take preventive action by
automating any incoming or outgoing traffic in your system boundary and alert
any suspicious activity.

Automation provides peace of mind by making sure the product is functioning without a
glitch. While designing an application, always makes sure to think from an automation
perspective and consider that as a critical component. You will learn more details about
automation throughout the book in the coming chapters.

Summary

In this chapter, you learned about the various principles of solution architecture design
which you need to apply when creating a solution design. These principles help you to take
a multi-dimensional look into architecture and consider the important aspects for the
success of the application.

We started the chapter with predictive and reactive patterns of scaling, along with the
methodology and benefits. We also learned about building a resilient architecture that can
withstand failure and recover quickly without impacting the customer experience.

Designing flexible architecture is the core of any design principle, and we learned about
how to achieve a loosely coupled design in your architecture. SOA helps to build an
architecture that can be easily scaled and integrated. We also covered microservice
architecture, and how it is different from the traditional monolithic architecture, and its
benefits.

[991]

Principles of Solution Architecture Design Chapter 4

We then learned about the principle of data-focused design, as pretty much all applications
revolve around data. You learned about different data types, with the example of storage
and associated technology. Finally, you learned the design principle of security and
automation, which applies everywhere and in all components.

As cloud-based services and architecture are becoming standard, in the next chapter, you
will learn about cloud-native architecture and develop a cloud-oriented design. You will
learn about different cloud migration strategies and how to create an effective hybrid cloud.
You will also learn about the popular public cloud providers, with which you can explore
cloud technologies further.

[100]

Cloud Migration and Hybrid
Cloud Architecture Design

So far, you have learned about various aspects of solution architecture, architecture
attributes, and architecting principals. Since the cloud is a developing trend, you will see
different examples from popular cloud technologies. The public cloud is becoming one of
the primary destinations to host applications, so it's important not to undervalue the
preposition and migration method in the cloud. In this chapter, you will learn about the
various aspects of the cloud and develop cloud thinking, which will also help you
understand the upcoming chapters better.

As you learned in chapter 1, The Meaning of Solution Architecture, cloud computing refers to
the on-demand delivery of IT resources over the web, and you pay as you utilize resources.
The public cloud helps you acquire technologies such as compute, storage, network, and
databases on an as-needed basis, instead of buying and maintaining your own data centers.

With cloud computing, the cloud vendor manages and maintains the technology
infrastructure in a secure environment and organizations access these resources over the
web to develop and run their applications. An IT resource's capacity can go up or down
instantly and organizations only pay for what they use.

Now, the cloud is becoming essential for every enterprise strategy. Almost every
organization increases its spending in IT, and on top of saving cost, they convert upfront
capital expenditures into operational expenditures. A lot of startups born in the last decade
started in the cloud and were fueled by cloud infrastructure for rapid growth.

As an enterprise moving to the cloud, they are focusing on cloud migration strategy and
hybrid cloud first before becoming cloud-native.

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

In this chapter, you will learn about the various strategies of cloud migrations and hybrid
cloud by covering the following topics:

¢ Benefits of cloud-native architecture
¢ Creating a cloud migration strategy

Steps for cloud migration

Creating a hybrid cloud architecture
¢ Designing a cloud-native architecture

Popular public cloud choices

By the end of this chapter, you will learn about the benefits of the cloud and be able to
design cloud-native architecture. You will understand different cloud migration strategies
and steps. You will also learn about hybrid cloud design and popular public cloud
providers.

Benefits of cloud-native architecture

In recent years, technology has been changing rapidly and new companies have been born
in the cloud world, disrupting old and long-standing organizations. Rapid growth is
possible because of no upfront cost involved when organizations are using the cloud, and
there is less risk in experimentation due to the pay-as-you-go model of the cloud.

The cloud agile approach helps employees in an organization develop innovative thinking
and implement their ideas without waiting for the long cycle of infrastructure. With the
cloud, customers don't need to plan excess capacity in advance to handle their peak season,
such as holiday shopping season for retailers; they have the elasticity to provision resources
per demand instantly. This significantly helps reduce costs and improve the customer's
experience. For any organization to stay in the competition, they have to move fast and
innovatively.

With the cloud, enterprises are not only able to get their infrastructure quickly across the
globe but can also access a wide variety of technologies that were never available before.
These include access to cutting edge technologies such as the following:

¢ Big data
e Analytics
e Machine learning

[102]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

e Artificial intelligence

¢ Robotics

e IoT (Internet of Things)
¢ Blockchain

Also, to achieve scalability and elasticity, these are some of the reasons that can trigger the
initiative for cloud migration and hybrid cloud strategy:

e The data center needs a technology refresh

¢ The data center's lease is ending

e The data center has run out of storage and compute capacity
e Modernization of an application

e Leverage cutting-edge technologies

e Need to optimize IT resources to save cost

e Disaster recovery planning

e Utilizing a content distribution network for the website

Every organization has a different strategy, and one size does not fit all when it comes to
cloud adoption. The frequent use cases are putting development and testing environments
in the cloud to add agility for developers so that they can move faster. As hosting web
applications is becoming more economical and more comfortable with the cloud,
organizations are using the cloud for digital transformation by hosting their websites and
digital properties in the cloud.

For application accessibility, it is essential to not only build an application for the web
browser but to ensure it is accessible through smart mobiles and tablets. The cloud is helping
with such transformations. Data processing and analytics is another area where enterprises
are utilizing the cloud since it is less expensive to collect, store, analyze, and share data
with the cloud.

Building a solution architecture for the cloud is slightly different than it is for regular
enterprise architecting. While moving to the cloud, you have to develop cloud thinking and
understand how to leverage the in-built capabilities of the cloud. For cloud thinking, you
follow the pay-as-you-go model. You need to make sure that you optimize your workload
properly and run your servers when it's required.

You need to think about how to optimize costs by bringing up your workload (when
needed) and choosing the right strategy for the workload, which always needs to be
running. In the cloud, the solution architect needs to have a holistic view of each
component regarding performance, scaling, high availability, disaster recovery, fault
tolerance, security, and automation.

[103]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

The other areas of optimization are cloud-native monitoring and alerting mechanisms.
You may not need to bring your existing third-party tool from on-premise to the cloud as
you can utilize native cloud monitoring better and get rid of costly third-party licensing
software. Also, now, you get to have deployment capabilities to any parts of the world in
minutes, so don't restrict yourself to a particular region and utilize the global deployment
model to build better high availability and disaster recovery mechanisms.

The cloud provides excellent deals for automation; you can pretty much automate everything.
Automation not only reduces errors and speeds up process time to market; it also saves lots
of cost by utilizing human resources efficiently and freeing them up from performing
tedious and repetitive tasks. The cloud works on a shared responsibility model where cloud
vendors are responsible for securing physical infrastructure. However, the security of an
application and its data is entirely the customer's responsibility. Therefore, it's important to
lock down your environment and keep a tab on security by utilizing cloud-native tools for
monitoring, alerts, and automation.

Throughout this book, you will learn about the cloud perspective of solution architecture
and get an in-depth understanding of cloud architecture. In the next section, you will learn
about various strategies for cloud migration.

Creating a cloud migration strategy

As we mentioned in the previous section, there could be various reasons for migrating to
the cloud, and those reasons play an essential role in your cloud migration journey. They
will help you determine a migration strategy and prioritize applications. In addition to
primary business drivers for cloud migration, you could have more reasons related to the
data center, business, application, team, and workload for cloud migration.

Often, migration projects adopt multiple strategies and utilize different tools accordingly.
The migration strategy will influence the time it takes to migrate and how the applications
are grouped for the migration process. The following diagram shows some of the
commonly used strategies for migrating existing applications to the cloud:

[104]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

["';1-
Relocate
Rehost
[3
Replatform / '_ o E b
85 Migrate J
Application Cloud
On-Premises Discovery ° § -o
Applications .
pp % (@ O
= e
({ Refactor
Cloud Native :
Retire or |
Retain

Repurchase

Cloud migration strategy

As shown in the preceding diagram, an organization can take a mix of migration strategies;
for example, if an application-hosted operating system is at its end of life, then you need to
upgrade the OS. You can take this opportunity to migrate to the cloud for better flexibility.
In this case, most likely, you will choose the Replatform method to recompile your code
into a new version of the OS and validate all its features. After you've finished testing, you
can migrate the application to the OS hosted in the infrastructure provided by the cloud.

You can do a Lift and Shift of the server or application from the source environment to the
cloud. Migrating a resource only needs minimal changes for it to work in the cloud. To take
a more cloud-native approach, you can refactor your application to fully utilize the cloud-
native feature, for example, converting monolithic into microservice. If your application is a
legacy application and cannot be moved, or it is not cloud compatible, you may want to
retire it and replace it with a cloud-native SaaS product or third-party solution.

[105]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Your business objectives will drive your decision to migrate applications and their priority
and strategy for migration. For example, when cost efficiency is the main driver, the
migration strategy typically involves mass migration with a heavy focus on the Lift and
Shift approach. However, if the main goal is to enable agility and innovation, the cloud-
native approach (such as rearchitecting and refactoring) plays a key role in the cloud
migration strategy. We'll learn more about each strategy in the following subsections.

Lift and Shift migration

Lift and Shift are the fastest modes of migration, as you need minimal work to move your
application. However, it does not take advantage of the cloud-native feature. Let's look at
the most common migration strategies, that is, rehost, replatform, and relocate, which are
often utilized to do Lift and Shift with minimal changes needing to be made to the
application.

Rehost

Rehost is fast, predictable, repeatable, and economical, which makes it the most preferred
method for migrating to the cloud. Rehost is one of the quickest cloud migration strategies,
where the server or application is lifted and shifted from the source on-premises
environment to the cloud. Minimal changes may be made to the resources during the
migration process.

Customers often use rehost to migrate their applications to the cloud quickly and then
focus on optimization when the resources are running in the cloud. This technique allows
them to realize the cost benefits of using the cloud.

Customers typically use the rehost technique for the following reasons:

e The temporary development and testing environment

e For when servers are running packaged software, such as SAP and Microsoft
SharePoint
¢ An application doesn't have an active roadmap

While rehost is an application for packaged software and helps us move quickly into the
cloud, you may need to upgrade underlying application platforms such as operating
systems. In such a situation, you can use the replatform approach of cloud migration.

[106]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Replatform

When the operating system, server, or database version goes to its end of life from
providers, then it can trigger the cloud migration project, for example, upgrading the
operating system of your web server from Microsoft Windows 2003 to Microsoft Windows
2008/2012/2016 or upgrading your Oracle database engine, and so on. Replatform involves
upgrading the platform as a part of the cloud migration project. You can decide to update
your operating system or application to a newer release as part of the migration.

When using the replatform migration strategy, you may need to reinstall your application
on the target environment, which triggers application changes. This requires thorough
testing on your application after replatform to ensure and validate its post-migration
operational efficiency.

The following common reasons warrant the use of the replatform technique:

¢ Changing the operating system from 32-bit to 64-bit OS

¢ Changing the database engine

e Updating the latest release of the application

e Upgrading an operating system from Windows 2008 to Windows 2012 or 2016

¢ Upgrading the Oracle database engine from Oracle 8 to Oracle 11

¢ To get the benefits of managed services that are available from cloud vendors
such as managed storage, databases, application deployment, and monitoring
tools

Replatform helps you advance your application's underlying platform while migrating to
the cloud. You can simply relocate your application to the cloud if it was deployed in
containers or VMware. Now, let's learn more about the Relocate strategy.

Relocate

You may deploy your application using containers or VMware appliances in your on-
premise data center. You can move such workloads to the cloud using the accelerate
migrations strategy known as relocate. Relocate helps you move hundreds of applications
in days. You can quickly relocate applications based on VMware and container
technologies to the cloud with minimal effort and complexity.

[107]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

The relocation strategy does not require much upfront developer investment or an
expensive test schedule since it provides the agility and automation you expect from the
cloud. You need to determine existing configurations and use VMotion or Docker to
relocate your servers to the cloud. VMotion is known for live migration. It's a VMware
technology that enables a virtual instance to be moved from one physical host server to
another without any interruption in the service.

Customers typically use the relocating technique for the following reasons:

e Workloads have been deployed in the container
¢ Applications have been deployed in VMware appliances

VMware Cloud (VMC) on AWS not only migrates applications, but it migrates thousands
of virtual machines, live from individual application to your entire data centers. While
migrating your application to the cloud, you may want to take the opportunity to rebuild
and rearchitect your entire application to make it more cloud-native. The cloud-native
approach allows you to use the full capability of the cloud. Let's learn more about the
cloud-native approach.

Cloud-native approach

When your team decides to move cloud-native for the short term, it seems like more
upfront work and slower migration to the cloud. This is a bit costly, but it pays off in the
long term when you start using all the cloud benefits with the agile team to innovate.

You will see a drastic decrease in cost over time with the cloud-native approach as you can
optimize your workload for the right price while keeping performance intact with the pay
as you go model. Cloud-native includes containerizing your application by rearchitecting as
a microservice or opting for a purely serverless approach.

For your business needs, you may want to replace the entire product with a ready-to-

use SaaS offering, for example, replacing on-premise Sales and HR solutions with Salesforce
and Workday SaaS offerings. Let's learn more about the refactor and repurchase methods
for the cloud-native migration approach.

[108]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Refactor

Refactor involves rearchitecting and rewriting an application before migrating it to the
cloud to make it a cloud-native application. Cloud-native applications are applications that
have been designed, architected, and built to perform efficiently in a cloud environment.
The benefits of these cloud-inherent capabilities include scalability, security, agility, and cost-

efficiency.
Refactoring requires more time and resources to recode the application and re-architecture
it before it can be migrated. This approach is commonly used by organizations that have

extensive cloud experience or a highly skilled workforce. An alternative option for
refactoring is to migrate your application to the cloud and then optimize it.

Common examples of refactoring include the following:

e Changing platforms such as AIX to UNIX

¢ Database transition from traditional to the cloud build

¢ Replacing middleware products

Rearchitecting the application from monolithic to microservice

Rebuilding application architecture such as containerizing or serverless
¢ Recoding application components

Sometimes, you may find a large effort being made to rebuild an application. As an
architect, you should evaluate if purchasing the Software-As-A-Service (SaaS) product
helps you get a better return on investment (ROI). Let's explore the repurchase strategy in
more detail.

Repurchase

When your IT resources and projects are migrated to the cloud, you may need servers or
applications, which requires you to purchase a cloud-compatible license or release. For
example, the current on-premises license for your application might not be valid when you
run the application in the cloud.

There are multiple ways to address such scenarios of licensing. You can purchase a new
license and continue to use your application in the cloud, or you can drop the existing
application and replace it with another one in the cloud. This replacement could be a
Saa$ offering of the same application.

[109]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Common examples of repurchase include the following:

e Replacing the application with a SaaS such as Salesforce CRM or Workday HR
¢ Purchasing a cloud-compatible license

The cloud may not be the answer for all of your problems and sometimes, you will find a
legacy application that may not benefit from cloud migration or discover rarely used
applications that can be retired. Let's learn about the retain or retire strategy in more detail.

Retain or retire

When you are planning a cloud migration, it may not be necessary to move all the
applications. You may need to retain some applications due to technology constraints; for
instance, they may be legacy applications coupled with an on-premise server and cannot
move. On the other hand, you may want to retire some applications and use cloud-native
capabilities, for example, third-party application monitoring and alerting system. Let's
learn more about the retain or retire decision.

Retain

You might encounter a few applications in your on-premises environment that are essential
for your business but are not suitable for migration because of technical reasons, such as the
OS/application not being supported on a cloud platform. In such situations, your
application cannot be migrated to the cloud, but you can continue running it in your on-
premises environment.

For such servers and applications, you may need to perform only the initial analysis to
determine their suitability for cloud migration. However, the server or application may still
have dependencies with applications that are migrated. Therefore, you may have to
maintain the connectivity of these on-premises servers to your cloud environment. You will
learn more about on-premises to cloud connectivity in the Creating a hybrid cloud architecture
section of this chapter.

Some typical workload examples for retentions are as follows:

¢ The legacy application where the customer doesn't see the benefit of moving to
the cloud.

¢ The operating system or application support is not available in the cloud such as
AS400 and mainframe application.

[110]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

You may want to retain complex legacy systems to on-premise and prioritize them so that
they can be moved a later point; however, during discovery, often, organizations find
applications that are not in use anymore but still sitting around and consuming
infrastructure space. You can choose to retire such applications. Let's explore more about
the retiring strategy.

Retire

While migrating to the cloud, you may discover the following:

¢ Rarely used applications
¢ Applications consuming an excessive amount of server capacity
e Applications that may not be required due to cloud incompatibility

In such a situation, you may want to retire the existing workload and take a fresh approach,
which is more cloud-native.

A retirement strategy can be applied to hosts and applications that are soon going to be
decommissioned. This can also be applied to unnecessary and redundant hosts and
applications. Depending on your business needs, such applications can be decommissioned
on-premises without even migrating to the cloud. Hosts and applications that are
commonly suited for retirement include the following:

¢ On-premise servers and storage for disaster recovery purposes
e Server consolidation to resolve redundancies

Duplicate resources due to mergers and acquisitions

Alternative hosts in a typical high-availability setup

Third-party licensed tools such as workload monitoring and automation, which
is available as in-built capabilities in the cloud

Most migration projects employ multiple strategies, and there are different tools available
for each strategy. The migration strategy will influence the time it takes to migrate and how
the applications are grouped for the migration process.

[111]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Cloud migration is a good time to examine your overall inventory and get rid of the ghost
server running under the developer desk and going unaccounted for. Often, the customer
sees the typically unseen advantage of optimizing the workload and tightening security
while running application discovery to prepare for migration. There are multiple phases
involved in cloud migration. In the next section, you will learn about the steps for cloud
migration.

Steps for cloud migration

In the previous section, you learned about different migration strategies and grouped your
application in order to apply the appropriate migration technique. Since you may need to
perform and manage multiple applications in the cloud, it's better to set up a cloud Center
of Excellence (CoE) and standardize this process with a cloud migration factory.

The cloud CoE includes experienced people from various IT and business teams across the
organization that act as a dedicated cloud team focused on accelerating the building of
cloud expertise in the organization. The cloud migration factory defines migration
processes and tools, as well as the steps that need to be taken, as shown in the following
diagram:

Plan
Analyze

E Design

B

Discover
g

On-premise i
Data Center e

Cloud Migration Factory

Optimize

Public Cloud
Integrate

Operate
Validate

Cloud migration steps

[112]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

As shown in the previous diagram, the cloud migration steps include the following:

¢ Discover: Discovery of cloud migration portfolios and on-premise workloads
¢ Analyze: Analyze discovered data and workloads

¢ Plan: Plan migration to the cloud and define the migration strategy

e Design: Design the application as per the migration strategy

e Migrate: Execute the migration strategy

¢ Integrate: Integrate with dependencies

e Validate: Validate functionality after migration

e Operate: Plan to operate in the cloud

¢ Optimize: Optimize your workload for the cloud

One of the initial steps of a cloud migration project is to assess and prioritize the
applications for migration. To accomplish this, you need to get a complete inventory of the
IT assets in your environment to determine which servers, applications, and business units
are suitable for migrating to the cloud, prioritize the migration plan, and determine a
migration strategy for these applications. Let's drill down each step and learn more about
them.

Discovering your workload

In the discovery phase of your migration project, you discover and capture detailed data
about your cloud migration portfolio, for example, the scope of your migration project. You
identify servers and applications in your portfolio, as well as their interdependencies and
current baseline performance metrics. Then, you analyze the gathered information to
determine application connectivity and capacity requirements, which can guide you in
designing and architecting the target cloud environment and identifying the cost.

A detailed discovery can also help in identifying any issues in the current state of the
application that might need mitigation before you migrate to the cloud. While analyzing
the discovery data, you will also determine an appropriate migration method for your
application. Portfolio discovery is the process of identifying all the IT assets that are
involved in your cloud migration project, including servers and applications, their
dependencies, and performance metrics.

[113]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

You will also need to gather business details about your resources, such as the Net Present
Value (NPV) of the resource, the refresh cycle of the application, the roadmap of the
application, and the business criticality of the server or application. These details will help
you determine your migration strategy and create a migration plan. In most organizations,
these details are maintained across multiple business units and teams. Therefore, during
the process of discovery, you may have to interact with various teams, such as business,
development, data center, network, and finance.

It is essential to understand that your discovery landscape will depend on various factors:

What has already been migrated to the cloud?

What application dependencies are there, along with resources and assets?

What are the business drivers for cloud migration?

What is the estimated duration for the entire migration project?
¢ How many phases is the migration process going to happen in?

One of the top challenges of a migration project is determining interdependencies among
applications, particularly since they pertain to Input/Output (I/O) operations and
communications. Cloud migration becomes even more challenging as organizations expand
due to mergers, acquisitions, and growth. Organizations often do not have complete
information about the following:

¢ The inventory of the number of servers
e Server specifications such as the type and version of OS, RAM, CPU, and disk

Server utilization and performance metrics

Server dependencies

Overall networking details

Performing a thorough portfolio discovery helps in answering questions such as the
following;:

Which applications, business units, and data centers are good candidates for
migration?

How suitable are the applications for migrating to the cloud?

What known or unknown risks are associated with migrating an application to
the cloud?

How should the applications be prioritized for migration?

[114]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

e Which other IT assets is the application dependent on?
e What is the best migration strategy for the application?

e Is it better to have some downtime for the application than to perform a live
migration due to its dependencies and risks?

Several tools are available in the market that can help automate the discovery process and
provide more detailed information in a variety of formats. These tools can be classified
based on various characteristics, such as deployment type, operation, support, and type of
data discovered and reported.

Most of the available solutions can be broadly classified into two categories:

e Agent-based solutions: They require their software client to be installed on a
server to gather the necessary details.

o Agentless solutions: They may be able to capture this information without any
additional installations.

Some solutions perform port scanning to probe a server or host for open ports, while others
perform packet scanning, which often involves capturing and analyzing network packets to
decode the information. The tools also vary based on the granularity of the data that's
discovered, the storage types, and the reporting options. For example, some tools can
provide a higher stack of intelligence beyond the network and can also determine the type
of applications running.

The complexity of the discovery process depends on the organization's workload and if
they already have a well-maintained inventory in place. Discovery processes are typically
run for at least a couple of weeks to gather more holistic information about your
environment. Once you discover all the necessary information, you need to analyze it. Let's
look at the analysis step in more detail.

Analyzing the information

To identify server and application dependencies, you need to analyze the network
connectivity data, port connections, system, and process information on the hosts.
Depending on your tool, you can visualize all the contacts from a server to identify its
dependencies, or you can run queries to list all the servers running a specific process, using
a particular port, or talking to a specific host.

[115]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

To group your servers and applications for migration scheduling, you need to identify
patterns in your host configurations. Often, some prefixes are embedded in the server
hostnames to signify their association with a particular workload, business unit,
application, or requirement. Some environments might also use tags and other metadata to
associate such details with the host.

To right-size your target environment, you can analyze the performance metrics for your
servers and applications:

e If a server is over-provisioned, you can revise your right-size mapping information.
You can also optimize this process by leveraging the utilization data for the
server/application instead of the server specifications.

e If a server is under-provisioned, you might assign a higher priority to the server to
migrate to the cloud.

Depending on the environment, the type of data that's captured during the discovery
process might vary. The data analyzed for migration planning is to determine target
network details such as firewall configuration and workload distribution and also the phase, in
which the application will be migrated.

You can combine this insight with the availability of your resources and business
requirements to prioritize your cloud migration workload. This insight can help you in
determining the number of servers to be included as part of each cloud migration sprint.

Based on the discovery and analysis of your cloud migration portfolio, you can determine
an appropriate cloud migration strategy for your applications. For instance, servers and
applications that are less complex and running on a supported OS might be suitable
candidates for a Lift and Shift strategy. Servers or applications that run on unsupported OS
might need further analysis to determine an appropriate strategy.

In a cloud migration project, discovery, analysis, and planning are tightly integrated. You
are performing a full discovery of your cloud migration portfolio and analyzing the data to
create a migration plan. By the end of the analysis phase, based on your analysis and the
details you've gathered from business owners, you should be able to do the following for
each server/application that is part of your cloud migration portfolio:

e Choose a migration strategy for the server/application, depending on your
organization's cloud adoption strategy. You may be limited to specific choices
within retaining, retire, repurchase, rehost, replatform, and refactor.

e Assign a priority for migrating the resource to the cloud. Eventually, all the
resources that are part of the cloud migration portfolio may migrate to the cloud,
but this priority will determine the urgency of that migration. A higher priority
resource might move earlier in the migration schedule.

[116]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

e Document the business driver for migrating the resource to the cloud, which will
drive the need and priority for migrating the resource to the cloud.

Let's look at migration planning in more detail.

Creating migration plan

The next phase in your migration project is planning cloud migration. You will use the
information you gathered during the portfolio discovery phase to create an efficient
migration plan. By the end of this phase in your migration project, you should be able to
create an ordered backlog of applications that can migrate to the cloud.

The main goals of the migration planning phase include the following;:

¢ Choosing a migration strategy

¢ Defining the success criteria for the migration

¢ Determining the right-sizing of the resources in the cloud

e Determining a priority for applications to migrate to the cloud
e Identifying migration patterns

¢ Creating a detailed migration plan, checklist, and schedule

¢ Creating migration sprint teams

e Identifying tools for migration

In preparation for the migration planning phase, you must perform a detailed discovery of
all the IT assets that are part of your cloud migration portfolio. The target destination
environment in the cloud is also architected before the planning phase. Migration planning
includes determining the cloud account structure and creating a network structure for your
application. It is also essential to understand hybrid connectivity with the target cloud
environment. Hybrid connectivity will help you plan for applications that might have
dependencies with resources that are still running on-premise.

[117]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

The order of application migration can be determined through three high-level steps:

1.

2.

Evaluate each application across several business and technical dimensions
associated with a potential migration to accurately quantify the environment.
Identify the dependencies for each application with qualifications such as locked,
tightly coupled, and loosely coupled to identify any dependency-based ordering
requirements.

Determine the desired prioritization strategy of the organization to determine the
appropriate relative weighting of the various dimensions.

The initiation of an application or server migration depends on two factors:

e First, the prioritization strategy of your organization and the application priority.

Your organization might place varying emphasis on a few dimensions, such as
maximizing ROI, minimizing risk, ease of migration, or another custom
dimension.

e Second, the insight gained through the portfolio discovery and analysis phase

can help you identify application patterns that match its strategy.

For example, if the organizational strategy is to minimize the risk, then business criticality
will have more weight in identifying the applications. If ease of migration is the strategy,
applications that can be migrated using rehost will have higher priority. The outcome of
planning should be an ordered list of applications that can be used to schedule the cloud
migration.

The following are the planning aspects of migration:

¢ Gather baseline performance metrics for your applications before migration.

Performance metrics will help you design or optimize your application
architecture in the cloud quantitatively. You might have captured most of these
performance details during the discovery phase.

Create test plans and user acceptance plans for your applications. These plans
will help in determining the outcome (success or failure) of the migration
process.

* You also need to have cutover strategies and rollback plans that define how and

where the applications will continue to run based on the outcome of the
migration.

Operations and management plans will be useful for determining the ownership
of roles during migration and post-migration. You can leverage RACI matrix
spreadsheets to define these roles and responsibilities for your application that
span the entire cloud migration journey.

[118]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

e Identify points of contact within the application team that can provide timely
support in case of escalations. Close collaboration across the teams will ensure
the successful completion of the migration per schedule (sprint).

If your organization has some of these processes already documented for your existing on-
premises environment, for example, change control process, test plans, and run books for
operations and management, you might be able to leverage them.

You need to compare performance and cost before, during, and after migration, which can
be an indication that they are not currently capturing enough of the right Key Performance
Indicators (KPIs) to enable this insight. The customer needs to identify and begin achieving
useful KPIs so that there is a baseline to compare against during and after migration. The
KPI approach in migration has a twofold goal. First, it needs to define the capabilities of
your existing application and then compare them with the cloud infrastructure.

When the new products are added to the catalog or a new service is launched, it increases
your company revenue, and that's a count against company KPI. Generally, IT metrics
include the quality of the product and the number of bugs that are reported for an
application. Service-Level Agreement (SLA) defined for fixing a critical bug, system
downtime, and performance metrics include system resource utilization values such as
memory utilization, CPU utilization, disk utilization, and network utilization.

You can use a continuous delivery methodology such as Scrum to efficiently migrate
applications to the cloud. With the help of the Scrum methodology, you can create multiple
sprints and add your applications to the sprint backlogs based on prioritization. You can
sometimes combine many applications that follow a similar migration strategy and are
possibly related to each other. Typically, you would maintain a constant duration across
sprints and vary the application based on factors such as sprint team size and the
complexity of the application.

If you have small teams that have in-depth knowledge about the applications that need to
be migrated, then you can use weekly sprints, where each sprint consists of the
discover/analyze, plan/design, and migrate phases, with a final cutover on the last day of
the sprint. However, as the team iterates through the sprints, the workload in each sprint
can increase because the teams have now gained experience in the migration process and
can incorporate the feedback from previous sprints to make the current sprint more
efficient with continuous learning and adaptation.

If you are migrating a complex application, you could also use the entire week for just the
plan/design phase and perform the other phases in separate sprints. Tasks that you perform
within the sprint and their deliverables can vary, depending on factors such as complexity
and team size. The key is to get some values from the sprint.

[119]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

You can create multiple teams to assist in the migration process, depending on various
factors such as your product backlog, migration strategy, and organizational structure.
Some customers create groups focused on each migration strategy such as a Rehost team, a
Refactor team, and a Replatform team. You could also have a team specialized in
optimizing your application architecture in the cloud. The multi-team strategy is the
preferred model for organizations that have a large number of applications to be migrated
to the cloud.

The team can be divided into the following segments:

o First, the team can validate the essential components to ensure your environment
(dev, test, or prod) is working, adequately maintained, and monitored.

¢ The integration team will determine the application configuration and also find
the dependencies, which will help reduce the waste that's made by another team.

e The Lift and Shift migration sprint team migrates large applications that don't
require refactoring or replatforming. The team will use automation tools to
deliver small incremental value after every sprint.

¢ The replatform migration sprint team focuses on application architecture changes
in order to migrate applications to the cloud, for example, modernizing
application design for microservices or updating the operating system to the
latest version.

¢ The refactor migration sprint team is responsible for managing various migration
environments such as production, testing, and development. They make sure all
the environments are scalable and functioning as required by monitoring them
closely.

¢ The innovation migration sprint teamworks collaboratively with groups such as
the foundation and transition team to develop a package solution that can be
used by other groups.

It's recommended that you run a pilot migration project while planning and continuously
building a product backlog so that these adaptations and lessons learned can be
incorporated into the new plan. The successful results of the pilot project and sprint can
also be used to help secure stakeholders buy-in for the cloud transformation program.

[120]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Designing the application

During the design phase, your focus should be on successfully migrating applications and
making sure your application design to meet the required success criteria is up to date after
it has been migrated to the cloud. For example, if you are maintaining user sessions in the
on-premise application server (so that it can scale horizontally), make sure that a similar
architecture is implemented in the cloud after the migration, which defines the success
criteria.

It is essential to understand that the primary goal of this phase is to ensure that your
application has been designed to meet the migration success criteria. You need to identify
opportunities that enhance your application, and these can be accomplished and achieved
during the optimization phase.

For migration, first, you need to have a complete understanding of your organization's
foundational architecture on-premises and in the cloud, which includes the following:

e User account

Network configuration

Network connectivity
e Security

¢ Governance

¢ Monitoring

Knowledge of these components will help you to create and maintain a new architect for
your application. For example, if your application handles sensitive information such

as Personally Identifiable Information (PII) and has control access, this means your
architecture needs a specific network setting.

During the design phase, you will identify the architecture gap and enhance your
architecture as per your application requirements. When you have multiple accounts, each
account may have some level of relationship or dependency; for example, you can have a
security account to ensure that all your resources are compliant with company-wide
security guidelines.

When thinking about your application's network design, you need to consider the
following;:

Network packet flows entering the boundaries of your application

External and internal traffic routing

Firewall rules for network protection

Application isolation from the internet and other internal applications

[121]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Overall network compliance and governance

Network log and flow audit

Separation of application risk levels, as per their exposure to data and users

DDoS attack protection and prevention

Network requirements for production and non-production environments

SaaS-based multi-tenancy application access requirements

Network boundaries at the business unit level in an organization
e Billing and implementation of the shared services model across the business unit

You can consider hybrid connectivity options with an on-premise system, depending on
your connectivity needs. To build and maintain a secure, reliable, performant, and cost-
optimized architecture in the cloud, you need to apply best practices. Review your cloud
foundational architecture against the cloud best practices before migrating to the cloud.

Chapter 4, Principles of Solution Architecture Design, highlights common architectural design
patterns that you can consider when migrating your application to the cloud. It is
important to emphasize here that the primary goal of the design phase in the migration
process is to design your application architecture so that it meets the migration success
criteria identified in the planning phase. Your application can be further optimized during
the optimization phase of the migration project.

In the process of migrating to the cloud, you can design your application architecture so
that it benefits from the global cloud infrastructure and increases proximity to your end
users, mitigates risk, improves security, and addresses data residency constraints. Systems
that are expected to grow over time should be built on top of a scalable architecture that can
support growth in users, traffic, or data with no drop in performance.

For applications that need to maintain some state information, you could make specific
components of the architecture stateless. If there are any layers in the architecture that need
to be stateful, you could leverage techniques such as session affinity to be still able to scale
such components. Leverage a distributed processing approach for applications that process
vast amounts of data.

Another approach to reducing the operational complexity of running applications is using
serverless architectures. These architectures can also reduce cost because you are neither
paying for underutilized servers nor provisioning redundant infrastructure to implement
high availability. You will learn more about the serverless architecture in Chapter 6,
Solution Architecture Design Patterns.

[122]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

The following diagram shows a migration design from on-premise to AWS Cloud:

2 & D &8
Internet 61) Internet| CTal &
Users Amazon Router 53 Users

On-Premise aws

0 AWS Cloud
50 2B

Availability Zone 1 3 Elastic Load i Availability Zone 2
cing: '

Load
,,,

Web server Balancer Web server
20 ~
e
Vv
'
Mer\ E i Web Server Fleet i on H
. H
ﬁ]
' : App Server fleet 1 . j:t '
! \
App server App server App server ! b

Database DB Standby

&
o
oo
- H

Web Server FI

On-premise to AWS Cloud architecture

In the preceding diagram, as part of the cloud migration strategy, it was determined to
rehost the web servers and introduce autoscaling to provide the elasticity that can help
meet the spikes in demand. Elastic load balancers are also added to distribute the incoming
traffic to the web server instances. The application servers were migrated using refactor,
and the platform for the database tier changed from the traditional database to a cloud-
native Amazon RDS. The entire architecture is distributed across multiple availability
zones to provide high availability, and the database replicates to a standby instance in the
second availability zone.

As an output of your design phase, you should create a detailed design document for the
architecture of your application in the cloud. The design document should include details
such as the user account that the application must migrate to, network configuration, and a
list of users, groups, and applications that need access to the data held by this application.
The design document should clearly articulate application hosting details and application-
specific requirements for backup, licensing, monitoring, security, compliance, patching, and
maintenance. Ensure that you create a design document for each application. You will need
it during the migration validation phase to perform a basic cloud functionality check and
an application functionality check.

[123]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Performing application migration to the cloud

Before executing on migration, ensure that you have a migration plan and that you have
identified the sprint teams and schedules, created a prioritized backlog, and notified all the
application stakeholders about the migration schedule, timelines, and their roles and
responsibilities. You must also ensure that the target environment in the cloud has already
been set up with the foundational architecture and core services. You might have some
application-specific pre-steps, such as performing a backup or sync before migration,
shutting down the servers, or unmounting disks and devices from the server.

Make sure you have good network connectivity with the cloud environment during the
migration process. A good estimate of the amount of data that needs to be migrated also
helps you properly estimate the time it will take to migrate your data to the cloud, given
other factors such as bandwidth and network connectivity. You also need to understand the
tools that are available to perform the migration. Given the number of devices that are
available in the market, you might have to narrow down the selection criteria based on
your requirements and other constraints.

As you know, rehost is often the fastest way to migrate your application to the cloud. When
the application is running in the cloud, you can further optimize it to leverage all the
benefits that the cloud has to offer. By quickly migrating your applications to the cloud, you
may start realizing the cost and agility benefits sooner.

Depending on the migration strategy, you typically migrate the entire server, including the
application and the infrastructure that the application is running on, or just the data that
belongs to an application. Let's look at how to migrate data and servers.

Data migration

Cloud data migration refers to the process of moving existing data to a new cloud storage
location. Most applications will require data storage throughout their progression into the
cloud. Storage migration typically aligns with one of two approaches, but organizations
may perform both at the same time:

e First, a single lift-and-shift move. This may be required before new applications
can be started up in the cloud.

e Second, a hybrid model weighted toward the cloud, which results in newly
architected cloud-native projects with some legacy on-premises data. The legacy
data stores may shift toward the cloud over time.

[124]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

However, your approach to migrating data will vary. It depends on factors such as the

amount of data, network and bandwidth constraints, the data classification tier such as
backup data, mission-critical data, data warehouses, or archive data, and the amount of
time you can allocate for the migration process.

If you have extensive archives of data or data lakes in a situation where bandwidth and
data volumes are unrealistic, you might want to Lift and Shift the data from its current
location straight into a cloud provider's data centers. You can do this either by using
dedicated network connections to accelerate network transfers or by physically transferring
the data.

If your data stores can gradually migrate over time, or when new data is aggregating from
many non-cloud sources, consider methods that provide a friendly interface to cloud
storage service. These migration services can leverage or complement existing installations
such as backup and recovery software or a Storage Area Network (SAN).

For a small-scale database, one-step migration is the best option, which requires you to shut
down the application for 2 to 4 days. During the downtime, all information from the
database is extracted and migrated to the destination database in the cloud. Once the
database has been migrated, it needs to be validated with the source database for no data
loss. After that, a final cutover can be completed.

In the other case, if a system requires minimal downtime, a two-step migration process is
more commonly used for databases of any size:

e In the first step, information is extracted from the source database.
¢ In the next step, data is migrated while the database is still up and running.

In the entire process, there is no downtime. After the migration task has
been completed, you can perform functionality and performance tests for
connectivity to external applications or any other criteria as needed.

During this time, because the source database is still up and running, changes will need to
be propagated or replicated before the final cutover. At this point, you would schedule
downtime for the database, usually a few hours, and synchronize the source and
destination databases. After all the change data has been transferred to the target database,
you should perform data validation to ensure a successful migration and finally route
application traffic to a new cloud database.

[125]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

You might have mission-critical databases that cannot have any downtime. Performing
such zero-downtime migrations requires detailed planning and the appropriate data
replication tools. You will need to use continuous data replication tools for such scenarios.
It is important to note here that source database latency can be impacted in the case of
synchronous replication as it waits for data to be replicated everywhere before responding
to the application while the replication is happening.

You can use asynchronous replication if your database downtime is only for a few minutes.
With the zero-downtime migration, you have more flexibility regarding when to perform
the cutover since the source and target databases are always in sync.

Server migration

There are several methods you can use to migrate a server to the cloud:

¢ The host or OS cloning technique involves installing an agent on the source
system that will clone the OS image of the system. A snapshot is created on the
source system and then sent to the target system. This type of cloning is used for
a one-time migration. With the OS Copy method, all operating system files are
copied from the source machine and hosted on a cloud instance. For the OS Copy
method to be effective, the people and/or tool that executes the migration must
understand the underlying OS environment.

¢ The Disaster Recovery (DR) replication technique deploys an agent on the
source system that's used to replicate data to the target. However, the data is
replicated at the filesystem or block level. A few solutions continuously replicate
the data to target volumes, offering a continuous data replication solution. With
the Disk Copy method, the disk volume is copied in its entirety. Once the disk
volume has been captured, it can be loaded into the cloud as volumes, which can
then be attached to a cloud instance.

e For virtual machines, you could use agentless techniques to export/import your
virtual machine into the cloud. With the VM Copy method, the on-premise
virtual machine image is copied. If the on-premise servers are running as virtual
machines, such as VMware or OpenStack, then you can copy the VM image and
import it into the cloud as a machine image. One main benefit of this technique is
that you can have server backup images that can be launched over and over
again.

[126]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

e With the User Data Copy method, only the application's user data is copied.
Once the data has been exported from the original server, you can choose one of
three migration strategies—repurchase, replatform, or refactor. The User Data Copy
method is only viable for those who know the application's internals. However,
because it only extracts user data, the User Data Copy method is an OS-agnostic
technique.

¢ You can containerize your application and then redeploy it in the cloud. With the
containerization method, both the application binary and user data are copied.
Once the application binary and user data have been copied, it can be run on a
container runtime that is hosted on the cloud. Because the underlying platform is
different, this is an example of the replatform migration strategy.

Several migration tools in the market can help you migrate your data and/or server to the
cloud. Some tools take a DR strategy for migration, and some DR tools also support
continuous replication to facilitate live migrations. There are some that specialize in
forklifting your servers, performing database migrations across platforms, or database
schema conversion. The tool must be able to support business processes that you are
comfortable with, and you must have the operational staff to manage it.

Integration, validation, and cutover

Migration, integration, and validation go hand in hand as you want to do continuous
validation while performing various integration with your application in the cloud.

The team starts by performing the necessary cloud functionality checks to ensure that the
application is running with proper network configuration (in the desired geolocation) with
some designated traffic flow. Instances can start or stop as desired when the basic cloud
functionality check is complete. You need to validate that the server configuration (such as
RAM, CPU, and hard disk) is the same as intended.

Some knowledge of the application and its functionality is required to perform these
checks. When the primary check is complete, then you can perform integration tests for the
application. These integration tests include checking integration with external
dependencies and applications; for example, to make sure the application can connect to
the Active Directory, Customer Relationship Management (CRM), patch or configuration
management servers, and shared services. When integration validation is successful, the
application is ready for cutover.

[127]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

During the integration phase, you integrate the application and migrate it to the cloud with
external dependencies to validate its functionality. For example, your application might
have to communicate with an Active Directory server, a configuration management server,
or shared services resources that are all external to the application. Your application may
also need to be integrated with external applications that belong to your clients or vendors,
such as a supplier receiving a feed from your APIs after a purchase order placement.

When the integration process is complete, you need to validate the integration by
performing unit tests, smoke tests, and user acceptance test (UAT). The results from these
tests help you get approval from the application and business owners. The final step of the
integration and validation phase includes a sign-off process from the application and
business owner of the application, which will allow you to cut over the application from
on-premises to the cloud.

The final phase of the cloud migration factory is the cutover process. In this phase, you take
the necessary steps to redirect your application traffic from the source on-premise
environment to the target cloud environment. Depending on the type of data or server
migration (one-step, two-step, or zero-downtime migration), the steps in your cutover
process may vary. Some factors to consider when determining a cutover strategy include
the following:

¢ Acceptable downtime for the application
¢ The frequency of the data update
e Data access patterns such as read-only or static data

¢ Application-specific requirements such as database syncs, backups, and DNS
name resolutions

¢ Business constraints, such as the day or time during which the cutover can
happen and the criticality of the data

¢ Changing management guidelines and approvals

Live migration is most popular for business-critical workload migration, let's learn more
about it.

Live migration cutover

The following diagram illustrates a cutover strategy for live zero-downtime migration. In
this method, the data is continuously replicated to the destination, and you perform most of
the functional validation and integration testing at the destination while the application is
still up and running;:

[128]

Cloud Migration and Hybrid Cloud Architecture Design

Chapter 5

80% traffic

0
AWS Cloud
~

Elastic Load Balancing

——

- =

Amazon EC2 Fleet Amazon EC2 i
'

! . !
| sptasn |
: 1
| AmaongC2 Amazon EC2_|
K_7 :
<EH)
"4 N

]

[}

www.example.com

20% traffic

On-premise

Data Center Region

wlislisifs

Web Servers

8 B8 E

Application
Servers

O

Database

Live migration cutover using blue-green deployment

In the replication process, the source on-premise database and target cloud database are
always in sync. When all the integration and validation tests are completed successfully
and the application is ready for cutover, you can take a blue-green approach to do the

cutover. You will learn more about blue-green deployments in chapter 12, DevOps and

Solution Architecture Framework.

Initially, the application continues to run both on-premises and in the cloud, resulting in
traffic being distributed between the two sides. You can increase traffic to cloud
applications gradually until all the traffic is directed to the new application, thus resulting

in a cutover with no downtime.

The other most commonly used cutover strategies involve some downtime. You schedule
downtime for the application, pause the traffic, take the application offline, and perform a
final sync. After the final sync, it might be a good idea to perform a quick smoke test on the
destination side. At this point, you can redirect the traffic from the source to the application
running in cloud, thus completing the cutover.

[129]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Operating cloud application

The operation phase of the migration process helps you to allow, run, use, and operate
applications in the cloud to the level agreed upon with the business stakeholders. Most
organizations typically already have guidelines defined for their on-premises

environments. This operational excellence procedure will help you identify the process
changes and training that will allow operations to support the goals of cloud adoption.

Let's discuss the differences between deploying complex computing systems in a data
center versus deploying them in the cloud. In a data center environment, the burden of
building out the physical infrastructure for a project falls on the company's IT department.
This means you need to make sure that you have the appropriate physical environmental
safeguards for your servers, such as power and cooling, that you can physically safeguard
these assets, and that you have maintained multiple redundant facilities at various
locations to reduce the chances of a disaster.

The downside of the data center approach is that it requires significant investment; it can be
challenging to secure the resources that are necessary if you wish to experiment with new
systems and solutions.

In a cloud computing environment, this changes dramatically. Instead of your company
owning the physical data center, the physical data center is managed by the cloud provider.
When you want to provision a new server, you ask your cloud provider for a new server
with a certain amount of memory, disk space, data I/O throughput rate, processor
capability, and so on. In other words, computing resources becomes a service that you can
provision, and de-provision as needed.

The following are the IT operations that you would want to address in the cloud:

e Server patching

e Service and application logging

¢ Cloud monitoring

e Event management

¢ Cloud security operations

¢ Configuration management

¢ Cloud asset management

e Change management

¢ Business continuity with disaster recovery and high availability

[130]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

IT organizations typically follow standards such as Information Technology Infrastructure
Library (ITIL) and Information Technology Service Management (ITSM) for most of
these operations. ITSM organizes and describes the activities and processes involved in
planning, creating, managing, and supporting IT services, while ITIL applies best practices
to implement ITSM. You need to modernize your ITSM practices so that it can take
advantage of the agility, security, and cost benefits provided by the cloud.

In traditional environments, the development team and the IT operations teamwork in their
silos. The development team gathers the requirements from business owners and develops
the builds. System administrators are solely responsible for operations and for meeting
uptime requirements. These teams generally do not have any direct communications
during the development life cycle, and each team rarely understands the processes and
requirements of the other team. Each team has its own set of tools, processes, and
approaches, which often leads to redundant and sometimes conflicting efforts.

In a DevOps approach, both the development team and the operations teamwork
collaboratively during the build and deployment phases of the software development life
cycle to share responsibilities and provide continuous feedback. The software builds are
tested frequently throughout the build phase on production-like environments, which
allows for the early detection of defects or bugs.

DevOps is a methodology that promotes collaboration and coordination between
developers and operational teams to deliver products or services continuously. This
approach is beneficial in organizations where the teams rely on multiple applications, tools,
technologies, platforms, databases, devices, and so on in the process of developing or
delivering a product or service. You will learn more about DevOps in Chapter 12, DevOps
and Solution Architecture Framework.

Application optimization in the cloud

Optimization is a very important aspect of operating in the cloud, and this is a continuous
process of improvement. In this section, you will learn about the various optimization
areas. There are chapters dedicated to each optimization consideration in this book. The
following are the major optimization areas:

e Cost: Optimize the cost efficiency of an application or a group of applications,
while considering fluctuating resource needs. You will learn more about
architecture cost
considerations in chapter 11, Cost Considerations.

[131]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

e Security: Continuously review and improve security policies and processes for
the organization to protect data and assets in the AWS cloud. You will learn
more about architecture security considerations in Chapter 8, Security
Considerations.

e Reliability: Optimize applications for reliability to achieve high availability and
defined downtime thresholds for applications, which will aid in recovering from
failures, handling increased demand, and mitigating disruptions over time. You
will learn more about architecture reliability consideration in chapter 9,
Architectural Reliability Considerations.

e Operational excellence: Optimize operational efficiency and the ability to run
and monitor systems to deliver business value and to improve supporting
processes and procedures continually. You will learn more about architecture
operational considerations in chapter 10, Operational Excellence Considerations.

e Performance: Optimize for performance to ensure that a system is architected to
deliver efficient performance for a set of resources, such as instances, storage,
databases, and space/time. You will learn more about architecture performance
considerations in Chapter 7, Performance Considerations.

To optimize costs, you need to understand what is currently being deployed in your cloud
environment and the price of each of those resources. By using detailed billing reports and
enabling billing alerts, you can proactively monitor your costs in the cloud.

Remember that, in the public cloud, you pay for what you use. Therefore, you might be
able to reduce costs by turning off instances when they are not needed. By automating your
instance deployment, you can also tear down and build up the instance entirely as
required.

As you offload more, you need to maintain, scale, and pay for less infrastructure. Another
way to optimize costs is by designing your architecture for elasticity. Make sure you right-
size your resources, use auto-scaling, and adjust your utilization based on price and need.
For example, it might be more cost-efficient for an application to use more small instances
than fewer large instances.

Several application architectural modifications can help you improve the performance of
your application. One way to improve the performance of your web servers is to offload

your web page through caching. You can write an application that lets you cache images,
JavaScript, or even full pages to provide a better experience to your users.

[132]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

You can design n-tier and service-oriented architectures to scale each layer and module
independently, which will help optimize performance. You will learn more about this
architecture pattern in chapter 6, Solution Architecture Design Patterns.

Creating a hybrid cloud architecture

The value of the cloud is growing, and many large enterprises are moving their workload
to the cloud. However, often, it's not possible to move entirely to the cloud in one day, and
for most customers, this is a journey. Those customers seek a hybrid cloud model where
they maintain a part of the application in an on-premise environment that needs to
communicate with the cloud module.

In a hybrid deployment, you need to establish connectivity between the resources running
in the on-premises environment and the cloud environment. The most common method of
hybrid deployment is between the cloud and existing on-premises infrastructure to extend
and grow an organization's infrastructure into the cloud while connecting cloud resources
to the internal system. The common causes of setting up a hybrid cloud may include the
following;:

¢ You want to have operating legacy applications in an on-premise environment
while you refactor and deploy in the cloud with a blue-green deployment model.

¢ A legacy application such as a mainframe may not have a compatible cloud
option and has to continue running on-premise.

e Need to keep part of the application on-premise due to compliance requirements.

¢ To speed up migration, keep the database on-premise and move the application
server to the cloud.

¢ The customer wants to have more granular control of part of the application.

¢ Data ingestion in the cloud from on-premise for the cloud's Extract, Transform,
Load (ETL) pipeline.

Cloud providers provide a mechanism for integrations between a customer's existing
infrastructure and the cloud so that customers can easily use the cloud as a seamless
extension to their current infrastructure investments. These hybrid architecture
functionalities allow customers to do everything from integrating networking, security, and
access control to powering automated workload migrations and controlling the cloud from
their on-premises infrastructure management tools.

[133]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Taking the example of AWS Cloud, you can establish a secure connection to AWS Cloud
using a VPN. Since a VPN connection is set up over the internet, there may be latency
issues due to multiple router hops from third-party internet providers. You can have your
fiber optics private line go to AWS Cloud for better latency using AWS Direct Connect.

As shown in the following diagram, with AWS Direct Connect, you can establish high-
speed connectivity between your data center and AWS Cloud to achieve a low latency
hybrid deployment:

Dedicated network connection

\ : e)
AWS Cloud over private lines

802.1g VLAN e —

Subnet 1 Client Client
- More throughput and better latency Customer
Awailability Zone 1
K WAN

—

iii"
AWS Direct Il
Subnet 2 Connect Remote server

Availability Zone 2 AWS Direct Connect Location

Customer Remote Network

. S

Hybrid cloud architecture (on-premise to cloud connectivity)

As shown in the preceding diagram, AWS Direct Connect Location establishes the
connectivity between the on-premises data center to AWS Cloud. This helps you achieve
the customer need of having dedicated fiber-optic lines to an AWS Direct Connect location;
the customer can opt for this fiber optic line from a third-party vendor such as AT&T,
Verizon, or Comcast in the USA. AWS has a directly connected partner in each region of the
world.

[134]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

At the AWS Direct Connect location, the customer fiber optic line is connected to AWS
private network, which provides dedicated end-to-end connectivity from the data center to
AWS Cloud. These optic lines can provide speeds of up to 10 GB/s. To secure traffic over
direct connect, you can set up a VPN, which will apply IPSec encryption to the traffic flow.

Designing a cloud-native architecture

You learned about the cloud-native approach earlier in this chapter from a migration point
of view, where the focus was on refactoring and rearchitecting applications when migrating
to the cloud. Each organization may have a different opinion on cloud-native architecture
but, at the center of it, cloud-native is all about utilizing all the cloud capabilities in the best
way possible. True cloud-native architecture is about designing your application so that it
can be built in the cloud from its foundations.

Cloud-native doesn't mean hosting your application in the cloud platform; it's about
leveraging services and features provided by the cloud. This may include the following:

¢ Containerizing your monolithic architecture in a microservice and creating a
CI/CD pipeline for automated deployment.

e Building a serverless application with technology such as AWS Lambda
Function as a Service (FaaS) and Amazon DynamoDB (a managed NoSQL
database in the cloud).

¢ Creating a serverless data lake using Amazon S3 (managed Object Storage
Service), AWS Glue (managed Spark Cluster for ETL), and Amazon Athena
(managed Presto cluster for ad hoc queries).

¢ Using a cloud-native monitoring and logging service, for example, Amazon
Cloud Watch.

¢ Using a cloud-native auditing service, for example, AWS CloudTrail.

[135]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

The following architecture is an example of a cloud-native serverless architecture for a
micro-blogging application:

— Amazon Route 53

User Request

AWS Cloud

Amazon AP Gateway @

Amazon 83

AWS Lambda ruIS|Lamoda

User Validation ser| Frofile
Amazon
Dynamo DB

Cloud-native micro-blogging application architecture

AWS Lambda
Blog Page

The preceding diagram is utilizing cloud-native serverless services in AWS Cloud. Here,
Amazon Route53, which manages the DNS service, is routing user requests. Lambda
manages function as a service to handle the code for User Validation, User Profile, and
Blog Page. All the blog assets are stored in Amazon S3, which manages object storage
services and all user profile data stored in Amazon DynamoDB, which is managed by the
NoSQL store.

As users send requests, AWS lambda validates the user and looks at their profile to ensure
they have a subscription in Amazon DynamoDB; after that, it picks blog assets such as
pictures, videos, and a static HTML writeup from Amazon S3 and displays them to the
user. This architecture can be scaled in an unlimited manner as all services are cloud-native
managed services, and you are not handling any infrastructure. Crucial factors such as high
availability, disaster recovery, and scalability are taken care of by these cloud-native
services so that you can focus on your feature development. In terms of cost, you will only
pay if a request goes to a blogging application. If no one is browsing for the blog at night,
you are not paying anything for hosting your code; you are only paying nominal cost for
storage.

[136]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

The benefit of the cloud-native architecture is that it enables fast-paced innovation and
agility in the team. It simplifies building out a complex application and infrastructure. As
system administrators and developers, you focus strictly on designing and building your
networks, servers, file storage, and other computing resources, and leave the physical
implementation to your cloud computing provider. The cloud-native architecture provides
several benefits:

e Fast scale-out, on-demand: You can request the resources you need when you
need them. You only pay for what you use.

¢ Replicate quickly: Infrastructure-as-a-code means you can build once and
replicate more. Instead of building your infrastructure by hand, you can
structure it as a series of scripts or applications. Building your infrastructure
programmatically gives you the ability to build and rebuild it on demand, when
needed for development or testing.

e Tear up and tear down easily: In the cloud, services are provided on-demand, so
it's easy to build up a large experimental system. Your system may include a
cluster of scalable web and application servers, multiple databases, terabytes of
capacity, workflow applications, and monitoring. You can tear it all down as
soon as the experiment is completed and save costs.

There are many more examples in the area of storage, networking, and automation for
building the cloud-native architecture. You will learn more about this architecture in
Chapter 6, Solution Architecture Design Patterns.

Popular public cloud choices

Since the cloud is becoming the norm, there are many cloud providers in the market that
provide cutting-edge technology platforms that are competing to get market share. The
following are the major cloud providers (at the time of writing):

e Amazon Web Services (AWS): AWS is one of the oldest and largest cloud
providers. AWS provides IT resources such as compute power, storage,
databases, and other services on need basis over the internet with a pay as you
go model. AWS not only offers laaS; it has a broad range of offerings in PaaS and
SaaS. AWS provides multiple offerings in cutting-edge technologies in the area of
machine learning, artificial intelligence, blockchain, internet of things (IoT), and
a comprehensive set of significant data capabilities. You can almost host any
workload in AWS and combined services to design an optimal solution.

[137]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

e Microsoft Azure: Also known as Azure and like any cloud provider, it provides
IT resources such as compute, network, storage, and database over the internet to
their customers.

Like AWS, Azure also provides laaS, PaaS, and SaaS offerings in the cloud,
which include a range of services from the computer, mobile, storage, data
management, content distribution network, container, big data, machine
learning, and IoT. Also, Microsoft has wrapped its popular offerings in the cloud
through Microsoft Office, Microsoft Active Directory, Microsoft SharePoint, MS
SQL Database, and so on.

¢ Google Cloud Platform (GCP): GCP provides cloud offerings in the area of
computing, storage, networking, and machine learning. Like AWS and Azure,
they have a global network of data centers available as infrastructure as a service
for their customers to consume IT resources over the internet. In compute, GCP
offers Google Cloud functions for the serverless environment, which you can
compare with AWS Lambda functions in AWS and Azure Cloud functions in
Azure. Similarly, GCP offers multiple programming languages for application
development with containers so that you can deploy application workloads.

There are many other cloud vendors available, such as Alibaba Cloud, Oracle Cloud, and
IBM Cloud, but the major markets are captured by the aforementioned cloud providers.
The choice of which cloud provider to use is up to the customer, which can be impacted by
the availability of the functionality they are looking for or based on their existing
relationship with providers. Sometimes, large enterprises choose a multi-cloud strategy to
utilize the best providers.

Summary

In this chapter, you learned how the cloud is becoming the most popular mainstream
application hosting and development environment for enterprises. At the beginning of this
chapter, you learned about cloud thinking and how it's related to solution architecture
design. Since more organizations are looking to move into the cloud, this chapter focused
on various cloud migration strategies, techniques, and steps.

You learned about various cloud strategies, as per the nature of workload and migration
priorities. Migration strategies include the ability to rehost and replatform your application
for Lift and Shift and takes the cloud-native approach by refactoring and rearchitecting
your application to take advantage of cloud-native capabilities. You may find some unused
inventory during application discovery and retire it. If you choose to not migrate a certain
workload then retain the application as is on-premises.

[138]

Cloud Migration and Hybrid Cloud Architecture Design Chapter 5

Then, you learned about the steps involved in cloud migration, which help you discover
your on-premise workload, analyze collected data, and create a plan to decide on which
migration strategy to take. During the design phase, you create a detailed implementation
plan and executed that during the migration steps, where you learned to set up
connectivity with the cloud and move your application from on-premise to the cloud.

After that, you learned about how to integrate, validate, and operate your workload into
the cloud after migration and apply continuous optimization for cost, security, reliability,
performance, and operational excellence. The hybrid cloud architecture is an integral part
of the migration process, so you learned about how to establish connectivity between on-
premise and the cloud by looking at an architecture example of AWS Cloud. At the end of
this chapter, you learned about significant cloud providers and their offerings.

In the next chapter, you will dive deep and learn more about various architecture design
patterns, along with the reference architecture. You will learn about different architecture
patterns such as multi-tier, service-oriented, serverless, and microservices.

Further reading

To learn more about the major public cloud providers, please refer to the following links:

e Amazon Web Services (AWS): https://aws.amazon.com
¢ Google Cloud Platform (GCP): https://cloud.google.com
e Microsoft Azure: https://azure.microsoft.com

Almost every cloud provider extends their learning credentials to new users, which means
you can sign up with your email and try their offerings out before you choose which one to
go with.

[139]

https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com

Solution Architecture Design
Patterns

There are multiple ways to design a solution. A solution architect needs to take the right
approach based on user requirements along with the architecture constraint of cost,
performance, scalability, and availability. In this chapter, you will learn about various
solution architecture patterns along with reference architectures and how to apply them in
real-world scenarios.

In the previous chapters, you learned about the attributes and principles of solution
architecture design. This chapter is both exciting and essential as you will be able to apply
your learning to various architecture design patterns. In this chapter, you will gain an
understanding of some of the significant solution architecture patterns, such as layered,
event-driven, microservice, loosely coupled, service-oriented, and RESTful architectures.

You will learn the advantages of various architectural designs and examples that
demonstrate when to utilize them. You will also gain an understanding of architecture
design anti-patterns in addition to the following architecture design patterns:

e Building an n-tier layered architecture

¢ Creating multi-tenant SaaS-based architecture

e Building stateless and stateful architecture designs
¢ Understanding service-oriented architecture (SOA)
e Building serverless architecture

¢ Creating microservice architecture

e Building queue-based architecture

¢ Creating event-driven architecture

Solution Architecture Design Patterns Chapter 6

Building cache-based architecture

Understanding the circuit breaker pattern

Implementing the bulkheads pattern

Creating a floating IP pattern

Deploying an application with a container

Database handling in application architecture
¢ Avoiding anti-patterns in solution architecture

By the end of the chapter, you will know how to optimize your solution architecture design
and apply best practices, making this chapter the center point and core of your learning.

Building an n-tier layered architecture

In n-tier architecture (also known as multitier architecture), you need to apply the principle
of loosely coupled design (refer to chapter 4, Principles of Solution Architecture Design) and
attributes of scalability and elasticity (refer to chapter 3, Attributes of the Solution
Architecture). In multilayer architecture, you divide your product functions into multiple
layers, such as presentation, business, database, and services, so that each layer can be
implemented and scaled independently.

With multitier architecture, it is easy to adopt new technologies and make development
more efficient. This layered architecture provides flexibility to add new features in each
layer without disturbing features of other layers. In terms of security, you can keep each
layer secure and isolated from others, so if one layer gets compromised, the other layers
won't be impacted. Application troubleshooting and management also become manageable
as you can quickly pinpoint where the issue is coming from and which part of the
application needs to troubleshoot.

The most famous architecture in multilayer design is three-tier architecture, so let's learn
more about it. The following diagram shows the most common architecture, where you
interact with a web application from the browser and perform the required functions, for
example, ordering your favorite T-shirt or reading a blog and leaving a comment:

[141]

Solution Architecture Design Patterns

Chapter 6

@WS Cloud

Elastic Load, Amazon
Balancing Route 53

Auto Scaling group

Application Layer

VPC ! . Auto Scaling group
i

Web Layer Amazon EC2 Amazon EC2

‘Amazon EC2

Subnet - 2

Amazon 3

Amazon
CloudFront

éé%

Users

Three-tier website architecture

In the preceding architecture, you have the following three layers:

e Web Layer: The web layer is the user-facing part of the application. End users

interact with the web layer to collect or provide information.

e Application Layer: The application layer mostly contains business logic and acts

upon information received from the web layer.

e Database Layer: All kinds of user data and application data are stored in the

database layer.

Let's take a look at these layers in more detail.

The web layer

The web layer is also known as the presentation tier. The web layer provides a user
interface that helps the end user to interact with the application. The web layer is your user
interface (in this case, the website page), where the user enters information or browses for
it. Web developers may build a presentation tier user interface in technologies such as
HTML, CSS, Angular]S, Java Server Page (JSP), and Active Server Page (ASP). This tier
collects the information from the user and passes it to the application layer.

[142]

Solution Architecture Design Patterns Chapter 6

The application layer

The application layer is also known as a logic tier, as this is the core of the product where
all the business logic resides. The presentation tier collects the information from the user
and passes it to the logic tier to process and get a result. For example, on an e-commerce
website such as Amazon.com, users can enter a date range on the order page of the website
to find their order summary. In return, the web layer passes the data range information to
the application layer. The application layer processes the user input to perform business
logic such as the count of orders, the sum of amounts, and the number of items purchased.
This returns information to the web layer to render it for the user.

Generally, in three-tier architecture, all algorithms and complex logic live in the logic tier,
which includes creating a recommendation engine or showing personalized pages to the
user as per their browsing history. Developers may choose to implement this layer in a
server-side programming language, for example, C++, Java, .NET, or Node.js. The
application layer performs logic on the data, which is stored in the database layer.

The database layer

The database layer, which is also known as the data tier, stores all the information related
to user profiles and transactions. Essentially, it contains any data that needs to persist in
being stored in the data tier. This information is sent back to the application layer for logic
processing and then, eventually, it renders to the user in the web layer. For example, if the
user is logged in to a website with their user ID and password, then the application layer
verifies the user credentials with information stored in the database. If the credentials
match the stored information, the user is allowed to log in and access the authorized area of
the website.

The architect may choose to build a data tier in relational databases, for

example, PostgreSQL, MariaDB, Oracle Database, MySQL, Microsoft SQL Server, Amazon
Aurora, or Amazon RDS. The architect may also add a NoSQL database such as Amazon
DynamoDB, MongoDB, or Apache Cassandra. The data tier is not only used to store
transaction information but also to hold user-session information and application
configuration.

[143]

Solution Architecture Design Patterns Chapter 6

In the n-tier layered architecture diagram, you will notice that each layer has its own Auto
Scaling configuration, which means it can be scaled independently. Also, each layer has a
network boundary, which means having access to one layer doesn't allow access to other
layers. You will learn more about security considerations in Chapter 8, Security
Considerations.

When designing multitier architecture, you need to take careful consideration of how many
layers should be added to your design. Each layer requires its own fleet of servers and
network configurations. So, adding more layers means increasing the cost and management
overhead, whereas keeping fewer layers means creating a tightly coupled architecture. The
architect needs to decide the number of tiers based on application complexity and user
requirement.

Creating multi-tenant SaaS-based
architecture

In the previous section, you learned about multitier architecture; however, the same
architecture that is built for a single organization is also called a single tenancy. Multi-
tenant architecture is becoming more popular as organizations adopt the digital revolution
while keeping the overall application cost low. The Software-as-a-Service (SaaS) model is
built on a multi-tenant architecture, where a single instance of the software and supporting
infrastructure serve multiple customers. In this design, each customer shares the
application and database, with each tenant isolated by their unique configuration, identity,
and data. They remain invisible to each other while sharing the same product.

As multi-tenant SaaS providers own everything from the hardware to the software, SaaS-
based products offload an organization's responsibilities to the maintenance and updates of
the application, as this is taken care by the SaaS provider. Each customer (tenant) can
customize their user interface using a configuration without any code changes. As multiple
customers share a common infrastructure, they get the benefit of scale, which lowers the
cost further. Some of the most popular SaaS providers are Salesforce CRM, the JIRA bug
tracking tool, and Amazon QuickSight.

[144]

Solution Architecture Design Patterns Chapter 6

As shown in the following architecture diagram, there are two organizations (tenants)
using the same software and infrastructure. The SaaS vendor provides access to the
application layer by allocating a unique tenant ID to each organization. Each tenant can
customize their user interface as per their business needs using a simple configuration:

P

Usert |jggpe Userd

Tenant ID

Tenant-1 (Crganization 1)

Data

Presentation Application Access
Layer Layer Layer

aee
Tenam D) |

Usert YUSEr2 ygery

Table
\ PK-T1 | row1
row 2

PK-T2

Tenant-2 (Organization 2)

Row Level Isolation

Multi-tenant Saa$ architecture

As shown in the preceding architecture design, the presentation layer provides a user
interface and the application layer holds the business logic. At the data access layer, each
tenant will have data level isolation with one of the following methods:

e Database Level Isolation: In this model, each tenant has its database associated
with its tenant ID. When each tenant queries data from the user interface, they
are redirected to their database. This model is required if the customer doesn't
want a single shared database for compliance and security reasons.

e Table Level Isolation: This isolation level can be achieved by providing a
separate table for each tenant. In this model, tables need to be uniquely assigned
to each tenant, for example, with the tenant ID prefix. When each tenant queries
data from the user interface, they are redirected to their tables as per their unique
identifier.

e Row Level Isolation: In this isolation level, all tenants share the same table in a
database. There is an additional column in a table where a unique tenant ID is
stored against each row. When an individual tenant wants to access their data
from the user interface, the data access layer of the application formulates a
query based on the tenant ID to the shared table. Each tenant gets a row that
belongs to their users only.

[145]

Solution Architecture Design Patterns Chapter 6

For enterprise customers, a careful assessment of whether a Saa$S solution is the right fit for
them based on their unique feature's requirements. This is because, often, a SaaS model has
limited customization capabilities. Additionally, we need to find the cost value proposition
if a vast number of users need to subscribe. The cost comparison should be calculated based
on the total cost of ownership when taking a build versus buy decision. This is because
building software is not the primary business of most organizations, so the SaaS model is
becoming highly popular as organizations can focus on their business and let the experts
handle the IT side of it.

Building stateless and stateful architecture
designs

While designing a complex application such as an e-commerce website, you need to handle
the user state to maintain activity flow, where users may be performing a chain of activities
such as adding to the cart, placing an order, selecting a shipping method, and making a
payment. Currently, users can use various channels to access an application, so there is a
high possibility that they will be switching between devices; for example, adding items in
the cart from their mobile and then completing checkout and payment from a laptop. In
this situation, you would want to persist user activity across the devices and maintain their
state until the transaction is complete. Therefore, your architecture design and application
implementation need to plan for user session management in order to fulfill this
requirement.

To persist user states and make applications stateless, user-session information needs to be
stored in persistent database layers such as the NoSQL database. This state can share
between multiple web servers or microservices. Traditionally, a monolithic application uses
stateful architecture, where user-session information is stored in the server itself rather than
via any external persistence database storage.

The session storage mechanism is the main difference between stateless and stateful
application designs. Since session information in a stateful application is local to the server,
it cannot be shared between other servers and also doesn't support modern microservice
architecture. You will learn more about microservice-based architecture in the Creating
microservice architecture section.

[146]

Solution Architecture Design Patterns Chapter 6

Often, a stateful application doesn't support horizontal scaling very well, as the application
state persists in the server which cannot be replaced. The stateful application worked well
early on when the user base was not very huge. However, as the internet becomes more
popular, it is reasonable to assume that you will have millions of users active on a web
application. Therefore, efficient horizontal scaling is important to handle such a large user
base and achieve low application latency.

In a stateful application, state information is handled by the server, so once users establish a
connection with a particular server, they have to stick with it until the transaction
completes. You can put a load balancer in front of the stateful application, but to do that,
you have to enable sticky sessions in a load balancer. The load balancer has to route user
requests to one server, where session information has been established. Enabling sticky
sessions violates the load balancer's default round-robin request for the distribution
method. Other issues may include lots of open connections to the server as you need to
implement a session timeout for the client.

Your design approach should focus more on the shared session state using the stateless
method, as it allows horizontal scaling. The following diagram shows an architecture that
depicts a stateless application for a web application:

@WS Cloud

Elastic Load Amazon

Balancing Route 53 Amazon S3
Web Layer _,T,_

1

1

:

] Auto Scaling group | '
\n: o— :
DEZI@}gEg“Vmwwﬂmmu prresra

[.

VPC

Amazon EC2 Amazon EC2 Amazon EC2 Subnet - 1
L

e

Amazon EC2 Amazon EC2 Amazon EC2

o .

Amazon EC2 —
____________________ Subnet - 2 ————

DE—

Users

A stateless application architecture

[147]

Solution Architecture Design Patterns Chapter 6

The preceding architecture diagram is a three-tier architecture with a web, application, and
database layer. To make applications loosely coupled and scalable, all user sessions are
stored persistently in the NoSQL database, for example, Amazon DynamoDB. You should
use client-side storage, such as cookies, for the session ID. This architecture lets you use the
scale-out pattern without having to worry about a loss of user state information. A stateless
architecture removes the overhead to create and maintain user sessions and allows
consistency across the application's modules. A stateless application has performance
benefits too, as it reduces memory usage from the server-side end and eliminates the
session timeout issue.

Adopting a stateless pattern can complicate tasks; however, with the right approach, you
can achieve a rewarding experience for your user base. You can develop applications using
the microservice approach with REST design patterns and deploy them in containers. For
this, use authentication and authorization to connect users to the server.

You will learn more about the REST design pattern and microservices in the next section.
As access to state information from multiple web servers focuses on a single location, you
must use caution to prevent the performance of the data store from becoming a bottleneck.

Understanding SOA

In SOA patterns, different application components interact with each other using a
communication protocol over the network. Each service provides end-to-end functionality,
for example, fetching an order history. SOA is widely adopted by large systems to integrate
business processes, for example, taking your payment service from the main application
and putting it as a separate solution.

In a general sense, SOAs take monolithic applications and spread some of those operations
out into individual services that operate independently to each other. The goal of using an
SOA is to loosen the coupling of your application's services.

Sometimes, an SOA includes not just splitting services apart from one another but splitting
resources into separate instances of that service. For instance, while some choose to store all
of their company's data in a single database split by tables, an SOA would

consider modularizing the application by function into separate databases altogether. This
allows you to scale and manage throughput based on the individual needs of tables for
each database.

[148]

Solution Architecture Design Patterns Chapter 6

SOA has multiple benefits, for example, the parallelization of development, deployment,
and operation. It decouples the service so that you can optimize and scale each service
individually. However, it also requires more robust governance to ensure work performed
by each service's team meets the same standard. With SOA, the solution could become
complex enough to increase the overhead to balance that, so you need to make the right
choice of tools and automation of service monitoring, deployment, and scaling.

There are multiple ways in which to implement SOA architecture. Here, you will learn
about the Simple Object Access Protocol (SOAP) web service architecture and
Representational State Transfer (REST) web service architecture.

Originally, SOAP was the most popular messaging protocol, but it is a bit heavyweight as it
entirely relies on XML for data interchange. Now, REST architecture is becoming more
popular as developers need to build more lightweight mobile and web applications. Let's
learn about both architectures and their differences in more detail.

SOAP web service architecture

SOAP is a messaging protocol that is used to exchange data in a distributed environment in
XML format. SOAP is a standard XML where data is transported in an envelope format
called SOAP Envelope, as shown in the following diagram:

PN

Message Body
b
XML Format
WSDL

S0AP
Envelope

HTTP Protocol

SOAP Envelope for web service data exchange

[149]

Solution Architecture Design Patterns Chapter 6

As shown in the preceding diagram, SOAP Envelope contains two parts:

e SOAP Header: The SOAP header provides information on how a recipient of a
SOAP message should process it. It contains authorization information to deliver
the message to the right recipient and for data encoding.

e Message Body: The message body contains the actual message in Web Services
Description Language (WSDL) specification. WSDL is an XML format file that
describes the Application Programming Interface (API) contract with the
message structure, API operations, and server Unique Resource Locator (URL)
address. Using a WSDL service, a client application can determine where a
service is being hosted and what functionality it can perform.

The following code shows an example of a SOAP envelope XML. Here, you can see both
the header and message wrap up under the SOAP envelope:

<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/socap-envelope">
<env:Header>
<n:orderinfo xmlns:n="http://exampleorder.org/orderinfo">
<n:priority>1</n:priority>
<n:expires>2019-06-30T16:00:00-09:00</n:expires>
</n:orderinfo>
</env:Header>
<env:Body>
<m:order xmlns:m="http://exampleorder.org/orderinfo">
<m:getorderinfo>
<m:orderno>12345</m:oderno>
</m:getorderinfo>
</m:order>
</env:Body>

SOAP commonly uses HTTP, but other protocols such as SMTP can be used.

[150]

Solution Architecture Design Patterns Chapter 6

The following diagram shows details about a message exchange in a web service using
SOAP. Here, the web service client sends the request to the service provider who hosts the
web service, and receives the response with the desired result:

<50ap:Body>
<GetOrderinfo=
<OrderNo=12345</0rderNo>
</GetOrderinfo=
</soap:Body=

SOAP Service Request
l (o
XML Service Response A > 4
Service Consumer \ Service Provider
Web Service Client Host Web Service

<m:GetOrderinforesponse=
=Orderdesc=AmazonEcodot</Orderdesc>
=COrderltemMo=ASINSE789></OrderltemNo=
=OrderQty=2</OrderCty=>
<OrderCity=Seattle</OrderCity>

<m:GetOrderinforesponses

SOAP-based web service

In the preceding diagram, the client is an e-commerce website user interface. The user
wants their order information and hence sends the SOAP message in the XML-format to the
application server with the order number. The application server hosts the order service,
which then responds with the customer's order details.

In a SOAP-based web service, the service provider creates an API contract in the form of
WSDL. WSDL lists all of the operations that web services can perform, such as providing
order information, updating orders, deleting orders, and more. The service provider shares
WSDL with web service client team, using which the client generates an acceptable
message format, sends data to the service provider, and gets the desired response. The web
service client fills the values in the generated XML message and sends it across to the
service provider with authentication details for processing.

The implementation of a SOAP-based web service has a higher complexity and requires
more bandwidth, which can impact web application performance, such as page loading
time, and any major changes in the server logic require all clients to update their code.
REST was created to address SOAP-based web service problems and provide a more
flexible architecture. Let's learn more about RESTful architecture and why it is becoming
widely popular.

[151]

Solution Architecture Design Patterns Chapter 6

RESTful web service architecture

A RESTful web service offers better performance due to its lightweight architecture. It
allows different messaging formats such as JSON, plaintext, HTML, and XML, compared to
SOAP, which only allows XML. REST is an architecture style that defines the standard for
loosely coupled application design using the HTTP protocol for data transmission.

JavaScript Object Notation (JSON) is a more accessible format for data exchange in REST
architecture. JSON is lightweight and language independent. JSON contains a simple key-
value pair that makes it compatible with data structures defined in most programming
languages.

REST focuses on the design principle for creating a stateless service. The web service client
doesn't need to generate a complex client skeleton, but it can access the web server
resources using the unique Uniform Resource Identifier (URI). The client can access
RESTful resources with the HTTP protocol and perform standard operations such as GET,
PUT, DELETE, and POST on the resources.

Your choice of architecture design between REST and SOAP depends upon your
organization's needs. The REST service offers an effective way to integrate with lightweight
clients such as smartphones, while SOAP provides high security and is suitable for complex
transactions. Let's take a look at the differences between REST and SOAP:

Attributes REST SOAP
. Architectural style with an informal |Predefined rules with a standard
Design g
guideline protocol
JSON, YAML, XML, HTML,
Message Format plaintext, and CSV XML
Protocol HTTP HTTP, SMTP, and UPD

Session State

Default stateless

Default stateful

Web Services Security and ACID

Security HTTPS and SSL .
compliance
Cache Cached API calls Cannot cache API calls
. Needs more bandwidth and
Performance Fast with fewer resources

compute power

Now, let's learn about a reference architecture based on service-oriented design.

[152]

Solution Architecture Design Patterns Chapter 6

Building an SOA-based e-commerce website
architecture

An e-commerce website such as Amazon.com has users from all parts of the world and a
huge catalog with millions of products. Each product has multiple images, reviews, and
videos. Maintaining such a big catalog for a global user base is a very challenging task.

This reference architecture follows SOA principles. Each service is operating as
independently as possible from each other. This architecture can be implemented using
either SOAP-based or RESTful-based web architecture:

Amazon 53 for logfile |
ClickStream data and product FiEs]
image

Product QT?
. Catalog and
Flecommendatuonﬂ Session Cache

Service

¢ l cacHE | cachE
Search Engine
I 'O with Amazon
outes3 Elastic Cache ElasticSearch
&) g [l
e

Amazon Cloudfront E-commerce
Application
Service
- Cart Checkout
Purchase request and Service DynamaDB for product
payment aver SSL catalog, user profile,

user transaction store

E-commerce website SOA architecture

As shown in the preceding architecture diagram, we can take note of the following:

e When a user types a website address into the browser, the user request reaches
out to the DNS server to load the website. The DNS requests for the website are
routed by Amazon Route 53 to the server where the web applications are being

hosted.

[153]

Solution Architecture Design Patterns Chapter 6

¢ The user base is global, and users continue browsing for products to purchase as
the website has a large product catalog with static images and videos. A content
distribution network such as Amazon CloudFront caches and delivers static
assets to users.

¢ The catalog contents, such as static product images and videos, along with other
application data, such as log files, are stored in Amazon S3.

¢ Users will browse the website from multiple devices, for example, they will add
items in a cart from their mobile and then make a payment on a desktop. To
handle user sessions, a persistent session store is required such as DynamoDB. In
fact, DynamoDB is a NoSQL database where you don't need to provide a fixed
schema, so it is a great storage option for product catalogs and attributes.

¢ To provide high performance and reduce latency, Amazon ElastiCache is used as
a caching layer for the product to reduce read and write operations on the
database.

¢ A convenient search feature is key for product sales and business success.
Amazon Cloud Search helps to build scalable search capability by loading the
product catalog from DynamoDB.

¢ A recommendation can encourage a user to buy additional products based on
their browsing history and past purchases. A separate recommendation service
can consume the log data stored on Amazon S3 and provide potential product
recommendations to the user.

¢ The e-commerce application can also have multiple layers and components that
require frequent deployment. AWS Elastic Beanstalk handles the auto-
provisioning of the infrastructure, deploys the application, handles the load by
applying Auto Scaling, and monitors the application.

In this section, you learned about SOA along with an architecture overview. Let's learn
more about the critical aspect of modern architecture design with a serverless architecture.

Building serverless architecture

In a traditional scenario, if you want to develop an application, you need to have a server
where your desired operating system and required software can be installed. While you are
writing your code, you need to make sure that your server is up and running. During
deployment, you need to add more servers to keep up with user demand and add scaling
mechanisms such as Auto Scaling to manage the desired number of servers to fulfill users'
requests. In this entire situation, a lot of effort goes into infrastructure management and
maintenance, which has nothing to do with your business problem.

[154]

Solution Architecture Design Patterns Chapter 6

Going serverless gives you the ability to focus on your application and write code for
feature implementation without worrying about underlying infrastructure maintenance.
Serverless means there is no server to run your code, which frees you up from Auto Scaling
and decoupling overheads while providing a low-cost model.

A public cloud, such as AWS, provides several serverless services in the area of computer
and data storage, which makes it easier to develop an end-to-end serverless

application. When you talk about serverless, the first thing that comes to mind is AWS
Lambda functions, which is a Function as a Service (FaaS) and is provided by AWS cloud.
To make your application service-oriented, Amazon API Gateway offers you the ability to
put RESTful endpoints in front of your AWS Lambda functions and helps you to expose
them as microservices. Amazon DynamoDB provides a highly scalable NoSQL database,
which is an entirely serverless NoSQL data store, and Amazon Simple Storage Service (S3)
provides serverless object data storage.

Let's take a look at an example of a reference serverless architecture in the following
architecture diagram for the delivery of a secure survey:

AWS Cloud Survey results
encrypted with server side
encryption)
gy
HTTPS HTML page Event Amazon 53
Requests Ef;;scall trigger results Repository
survey <>
‘— ' - %
AL ~ |Unencrypted survey
metadata(not personall
Customer Amazon S3 serves Amazon AP Lambda Function [\dentifiable info)
Secure HTML Gateway processes survey

survey page

Amazon DynamoDB
survey metadata
repository

API calls logged in
AWS Cloud Trail

Serverless architecture for a secure survey delivery

In this example, a serverless architecture serves, delivers, and processes secure surveys, all
on managed services:

1. First, a customer requests the website over HTTPS. The web page is served
directly from Amazon S3.

[155]

Solution Architecture Design Patterns Chapter 6

2. The customer's survey is submitted via an AJAX call to Amazon API Gateway.

3. Amazon API Gateway logs this to Amazon CloudTrail. If a survey's results are
lost, or if one of the AJAX calls includes malicious activity of some sort, these
logs may be helpful in identifying and fixing the problem.

4. Amazon API Gateway then turns the AJAX call into an event trigger for an AWS
Lambda function, which pulls the survey data and processes it.

5. The results of the survey are sent by the AWS Lambda function to an Amazon S3
bucket, where they are secured with server-side encryption.

6. Metadata from the survey, which does not include any personally identifiable
information, is then written and stored in a DynamoDB table. This could be used
for later queries and analysis.

Due to the increasing popularity of serverless architecture, you will see more reference
architectures using serverless services as we move forward with this book. The concept of
microservices is also becoming popular with the adoption of RESTful-style architectures.
Let's learn more about REST architectures and microservices in the next sections.

Creating microservice architecture

Microservices are architected in REST-style web services and are independently scalable.
This makes it easier to expand or shrink the relevant components of your system while
leaving the rest untouched. A system that employs microservices can more easily withstand
incidents where application availability can degrade gracefully to avoid any cascading
failures. Your system becomes fault-tolerant, that is, built with failure in mind.

The clear advantage of microservices is that you have to maintain a smaller surface area of
code. Microservices should always be independent. You can build each service with no
external dependencies where all prerequisites are included, which reduces the inter-
dependency between application modules and enables loose coupling.

The other overarching concept of microservices is bounded contexts, which are the blocks
that combine together to make a single business domain. A business domain could be
something like car manufacturing, bookselling, or social network interactions that involve a
complete business process. An individual microservice defines boundaries in which all the
details are encapsulated.

[156]

Solution Architecture Design Patterns Chapter 6

Scaling each service is essential while dealing with the large-scale access of applications,
where different workloads have different scaling demands. Let's learn about some best
practices for designing microservice architecture:

e Create a separate data store: Adopting a separate data store for each
microservice allows the individual team to choose a database that works best for
their service. For example, the team that handles website traffic can use a very
scalable NoSQL database to store semi-structured data. The team handling order
services can use a relational database to ensure data integrity and the consistency
of transactions. This also helps to achieve loose coupling where changes in one
database do not impact other services.

o Keep servers stateless: As you learned in the previous section, Building stateless
and stateful architecture designs, keeping your server stateless helps in scaling.
Servers should be able to go down and be replaced easily, with minimal or no
need for storing state on the servers.

¢ Create a separate build: Creating a separate build for each microservice makes it
easier for the development team to introduce new changes and improve the
agility of the new feature release. This helps to make sure that the development
team is only building code that is required for a particular microservice and not
impacting other services.

e Deploy in a container: Deploying in a container gives you the tool to deploy
everything in the same standard way. You can choose to deploy all microservices
in the same way regardless of their nature using containers. You will learn more
about container deployment in the, Deploying an application with a container
section.

¢ Blue-green deployment: The better approach is to create a copy of the
production environment. Deploy the new feature and route a small percentage of
the user traffic to make sure the new feature is working as per expectation in a
new environment. After that, increase the traffic in the new environment until
the entire user base is able to see the new feature. You will learn more about
blue-green deployment in chapter 12, DevOps and Solution Architecture
Framework.

¢ Monitor your environment: Good monitoring is the difference between reacting
to an outage and proactively preventing an outage with proper rerouting,
scaling, and managed degradation. To prevent any application downtime, you
want services to offer and push their health status to the monitoring layer,
because who knows better about status than the service itself! Monitoring can be
done in many ways, such as plugins, or by writing to a monitoring APIL.

As you learned about the various advantages of microservice in this section, let's take a
look at a microservice-based reference architecture for a real-time voting application.

[157]

Solution Architecture Design Patterns Chapter 6

Real-time voting application reference
architecture

A microservice-based architecture is illustrated in the following diagram, representing a
real-time voting application, where small microservices process and consolidate user votes.
The voting application collects individual user votes from each mobile device and stores all
the votes in a NoSQL-based Amazon DynamoDB database. Finally, there is application
logic in the AWS Lambda function, which aggregates all of the voting data cast by users to
their favorite actor and returns the final results:

AWS Lambda writes the sum of the
voles (aggregate to second) in
another Amazon DynamoDE table

DynamoDB stores votes where
DynamoDB Stream (DDB) is enabled,
which tracks changes in the tables

: Store the
Message content is sent A
O -

Cs KN .| |
y SN ﬁ ’EIO I:',_l ri [] I I

X=X . [1]

B i Store
Users send the vote to a The Lambda function extracts o, yqe
phone number as the vote from the message Route 53 provides a website address
and stores it in and routing to the web page

a message

r

Amazon §3 host website and
guery data in Amazon
DynamoDB to show final
dashboard

E-.‘_“’@

The user requests to
see the final voting result

Microservice based real-time voting application architecture

[158]

Solution Architecture Design Patterns Chapter 6

In the preceding architecture, the following things are happening:

1. Users text a vote to a phone number or shortcode provided by a third party such
as Twilio.

2. The third party is configured to send the content of the message to an endpoint
created by Amazon API Gateway, which then forwards the response to a
function built in AWS Lambda.

3. This function extracts the vote from the message content and writes the result
and any metadata into a table in Amazon DynamoDB.

4. This table has DynamoDB Streams enabled, which allows you to track changes to
your tables on a rolling basis.

5. After the update, DynamoDB Streams notifies a second AWS Lambda function,
which has the application logic to aggregate the votes (to every second) and
writes them back to another DynamoDB table. The second table only stores the
sum of the votes for each category.

6. A dashboard to display a summary of votes is created using HTML and
JavaScript and hosted as a static website in Amazon S3. This page uses the AWS
JavaScript SDK to query the aggregate Amazon DynamoDB table and display the
voting results in real time.

7. Finally, Amazon Route 53 is used as a DNS provider to create a hosted zone
pointing a custom domain name to the Amazon S3 bucket.

This architecture is not only microservice-based but also serverless. Using microservices,
you can create applications made of small independent components, which constitute
smaller parts to iterate. Microservice-based architecture means that the cost, size, and risk
of change reduces, increasing the rate of change.

Message queues play a vital role to achieve accurate loose coupling and help to avoid
application throttling. A queue allows secure and reliable communication between
components. Let's learn more about queue-based architecture in the next section.

Building queue-based architecture

In the previous section, you learned about microservice design using RESTful architecture.
The RESTful architecture helps your microservice to be easily discoverable, but what
happens if your service goes down? This is a contemporary architecture, where your client
service waits for a response from the host service, which means that the HTTP request
blocks the API. Sometimes, your information may be lost due to the unavailability of a
downstream service. In such cases, you must implement some retry logic in order to retain
your information.

[159]

Solution Architecture Design Patterns Chapter 6

A queue-based architecture provides a solution to this problem by adding message queues
between services, which holds information on behalf of services. The queue-based
architecture provides fully asynchronous communication and a loosely coupled
architecture. In a queue-based architecture, your information is still available in the
message. If a service crashes, the message can get the process as soon as the service
becomes available. Let's learn some terminology of a queue-based architecture:

e Message: A message can have two parts—the header and the body. The header
contains metadata about the message, while the body contains the actual
message.

Queue: The queue holds the messages that can be used when required.

Producer: A service that produces a message and publishes it to the queue.
e Consumer: A service that consumes and utilizes the message.

Message broker: Helps to gather, route, and distribute messages between the
producer and consumer.

Let's learn about some typical queue-based architecture patterns to get an idea of how they
work.

Queuing chain pattern

A queuing chain pattern is applied when sequential processing needs to run on multiple
systems that are linked together. Let's understand the queuing chain pattern using the
example of an image-processing application. In an image-processing pipeline, sequential
operations of capturing the image and storing it on a server, running a job to create
different-resolution copies of the image, watermarking the image, and thumbnail
generation are tightly linked to each other. A failure in one part can cause the entire
operation to be disrupted.

You can use queues between various systems and jobs to remove a single point of failure
and design true loosely coupled systems. The queuing chain pattern helps you to link
different systems together and increase the number of servers that can process the messages
in parallel. If there is no image to process, you can configure Auto Scaling to terminate the
excess servers.

[160]

Solution Architecture Design Patterns Chapter 6

The following diagram shows a queuing chain pattern architecture. Here, the queue
provided by AWS is called Amazon Simple Queue Service (SQS):

AWS Cloud

3 Process Job

Put Message

[

Get Message
2

Get Message

Put Message :

Amazon
sas

Amazon
5Qas

Delete Successfully)
Processed Message Message in Queue

Queuing chain pattern architecture

The preceding architecture has the following steps:

1.

As soon as the raw image is uploaded to the server, the application needs to
watermark all of the images with the company's logo. Here, a fleet of Amazon
EC2 servers is running batch jobs to watermark all the images and push the
processed image into the Amazon SQS queue.

The second fleet of Amazon EC2 servers pulls the watermarked images from the
Amazon SQS queue.

The second fleet of EC2 workers has a job to process the image and create
multiple variations with different resolutions.

After encoding the images, the EC2 workers push the message into another
Amazon SQS queue.

As the image is processed, the job deletes the message from the previous queue
to make up space.

The final fleet of EC2 servers gets encoded messages from the queue and creates
thumbnails along with the copyright.

[161]

Solution Architecture Design Patterns Chapter 6

The benefits of this architecture are as follows:

¢ You can use loosely coupled asynchronous processing to return responses
quickly without waiting for another service acknowledgment.

* You can structure the system through the loose coupling of Amazon EC2
instances using Amazon SQS.

¢ Even if the Amazon EC2 instance fails, a message remains in the queue service.
This enables processing to be continued upon recovery of the server and creates a
system that is robust to failure.

You may get fluctuations in application demand that can cause unexpected message loads.
Automating your workload as per the queue message load will help you to handle any
fluctuations. Let's learn more about the job observer pattern to handle such automation next.

Job observer pattern

In the job observer pattern, you can create an Auto Scaling group, based upon number of
messages in the queue to process. The job observer pattern helps you to maintain
performance through increasing or decreasing the number of server instances used in job
processing.

The following diagram depicts the job observer pattern:

AWS Auto-scaling
add additional server

Amazon Cloudwatch
Manitoring Queue threshold

Message
Threshold

[

I

Put Message Get Message
L)
EC2
Message Queue EC2

Job observer pattern architecture

[162]

Solution Architecture Design Patterns Chapter 6

In the preceding architecture, the first fleet of Amazon EC2 servers is on the left-hand side,
running batch jobs and putting messages in the queue, for example, image metadata. The
second fleet of EC2 servers on the right-hand side is consuming and processing those
messages, for example, image encoding. As the message reaches a certain threshold,
Amazon CloudWatch triggers Auto Scaling to add the additional server in the consumer
fleet to speed up the job processing. Auto Scaling also removes additional servers when the
queue depth goes below the threshold.

The job observer pattern computes scale with job size, providing efficiency and cost
savings. The job observer pattern architecture allows the job to be completed in a shorter
time frame. The process is resilient, which means job processing doesn't stop if a server
fails.

While queue-based architecture provides loose coupling, it works mostly on the
Asynchronous Pull method, where the consumer can pull the message from the queue as per
their availability. Often, you need to drive communication between various architecture
components where one event should trigger other events. Let's learn more about event-
driven architecture in the next section.

Creating event-driven architecture

Event-driven architecture helps you to chain a series of events together to complete a
feature flow. For example, when you are making a payment to buy something on a website,
you are expecting to get your order invoice generated and to get an email as soon as the
payment is complete. Event-driven architecture helps to rope in all of these events so that
making a payment can trigger another task to complete the order flow. Often, you will see
message queues, which you learned about in the previous section, as the central point while
talking about event-driven architecture. Event-driven architecture can also be based on the
publisher/subscriber model or the event stream model.

Publisher/subscriber model

In the pub/sub model, when an event is published, a notification is sent to all subscribers,
and each subscriber can take the necessary action as per their requirements of data
processing. Let's take an example of a photo studio application, which enriches a photo
with different filters and sends a notification to the user. The following architecture depicts
a pub/sub model:

[163]

Solution Architecture Design Patterns Chapter 6

Apply Filters

.I

—_— Amazon SQS
Amazon SNS
o, AWS Lambda
</>| W_E
Amazon
API Gateway Amazon S3 AWS Lambda

Customer Photo
Upload application

S Oe.m.

Email Notification | Create Thumbnail

Photo studio application pub/sub-event-driven architecture

In the preceding diagram, you will notice the following things:

1. The user first uploads the picture to an Amazon S3 bucket using a web/mobile
application.
2. The Amazon S3 bucket then sends a notification to Amazon Simple Notification
Service (SNS). Amazon SNS is a message topic with the following subscribers:
1. Here, the first subscriber is using the email service, and as soon as the
photo upload is complete, an email is sent to the user.
2. The second subscriber is using Amazon SQS queue, which gets the
message from the Amazon SNS topic and applies various filters in
code written in AWS Lambda to improve the image quality.

3. The third subscriber is using the direct AWS Lambda function, which
creates the image thumbnail.

In this architecture, Amazon S3 publishes the message to the SNS topic as a producer which
is consumed by multiple subscribers. Additionally, as soon as the message comes to SQS, it
triggers an event for the Lambda function to process images.

[164]

Solution Architecture Design Patterns Chapter 6

Event stream model

In the event stream model, the consumer can read from the continuous flow of events
coming from the producer. For example, you can use the event stream to capture the

continuous flow of a clickstream log and also send an alert if there are any anomalies
detected, as shown in the following architecture diagram:

Amazon SNS

| Conversion Rates |
Amazon —
— AP| Gateway -/ x
[] () I s B
4 7

? AWS Lambda

Amazon Amazon Amazon
Kinesis Kinesis Kinesis Data
Data Stream patg Analytics Firehose o

e HTTP |
Clickstream Data i -
From Various Customers

HTTP Notification Email
to other Service Notification

Amazon S3

Clickstream analysis event stream architecture

Amazon Kinesis is a service that is used to ingest, process, and store continuous streaming
data. In the preceding diagram, various customers clicking on e-commerce applications
from web and mobile applications produce a stream of click events. These clickstreams are
sent to analytics applications using Amazon API Gateway for real-time analytics. In this
analytics application, Kinesis Data Analytics calculates Conversion Rates over a certain
period of time, for example, the number of people that ended up making a purchase in the
last five minutes. After aggregating data in real time, Amazon Kinesis Data Analytics
sends the results to Amazon Kinesis Data Firehose, which stores all the data files in
Amazon S3 storage for further processing as needed.

[165]

Solution Architecture Design Patterns Chapter 6

A Lambda function reads from the event stream and starts examining the data for
Anomalies. As anomalies in the conversion rates are detected, the AWS Lambda function
sends a notification on email for the campaign team to be notified. In this architecture, the
event stream is occurring continuously, and AWS Lambda is reading from the stream for a
specific event.

You should use event-driven architecture to decouple the producer and consumer and keep
the architecture extendable so that a new consumer can be integrated at any time. This
provides a highly scalable and distributed system with each subsystem having an
independent view of events. However, you need to apply a mechanism to avoid duplicate
processing and error message handling.

To achieve good application performance, caching is an important factor and it can be
applied at every architecture layer and in pretty much any architecture component. Let's
learn more about cache-based architecture in the next section.

Building cache-based architecture

Caching is the process of temporarily storing data or files in an intermediary location
between the requester and the permanent storage, for the purpose of making future
requests faster and reducing network throughput. Caching increases the application speed
and lowers the cost. It allows you to reuse previously retrieved data. To increase
application performance, caching can be applied at various layers of the architecture such
as the web layer, application layer, data layer, and network layer.

Normally, the server's random access memory (RAM) and in-memory cache engines are
utilized to support application caching. However, if caching is coupled to a local server,
then the cache will not be persisting data, in case of a server crash. Now, most of the
applications are in a distributed environment, so it's better to have a dedicated caching
layer that should be independent of the application life cycle. When you applied horizontal
scaling to your application, all servers should be able to access the centralized caching layer
to achieve the best performance.

[166]

Solution Architecture Design Patterns

Chapter 6

The following diagram depicts the mechanism of caching in various layers of solution

architecture:

Caching in Layered Architecture

Client Side

stores

(e (Mobile and Fast retrieval of web content from websites using {A!’
a) Desktop) HTTP Cache Headers, Browsers
Internet
q) (Domain Name Fast Domain to IP Resolution from DNS Server
- Server - DNS)
o)
O
Q L
 — Web Content Fast retrieval of web content from web servers and
_C (Web Layer) manage web sessions at server side iF"'
O -
L
- Application Improve application performance and data access with
o (App Layer) Key/Value data stores and local caches
whd
Database Reduce latency associated with database query
(DB Layer) requests using database buffers and Key/Value data l =

Caching at the architecture layers

[167]

Solution Architecture Design Patterns Chapter 6

As shown in the preceding diagram, the following are the caching mechanisms at each
layer of architecture:

e Client side: Client-side caching is applied to user devices such as mobile and
desktop. This caches the previously visited web content to respond faster to a
subsequent request. Each browser has its own caching mechanism. HTTP
caching makes the application faster by caching content at the local browser. The
cache-control HTTP header defines browser caching policies for both client
request and server response. These policies define where the content should be
cached and how long it will persist, which is known as Time to Live (TTL).
Cookies are another method used to store information at the client machine in
order to respond to the browser faster.

¢ DNS cache: When a user types the website address over the internet, the public
Domain Name System (DNS) server looks up the IP address. Caching this DNS
resolution information will reduce the website's load time. DNS can be cached to
a local server or browser after the first request and any further request to that
website will be faster.

e Web caching: Much of the request involves retrieving web content such as
images, video, and HTML pages. Caching these assets near to the user location
can provide a much faster response for a page load. This also eliminates disk
read and server load time. A content distribution network (CDN) provides a
network of edge locations where static content such as high-resolution images
and videos can be cached. It's very useful for reading heavy applications such as
games, blogs, e-commerce product catalog pages, and more. The user
session contains lots of information regarding user preference and their state. It
provides a great user experience to store the user's session in its own key-value
store and applies to cache for quick user response.

e Application caching: At the application layer, caching can be applied to store the
result of a complex repeated request to avoid business logic calculations and
database hits. Overall, it improves application performance and reduces the load
on the database and infrastructure.

e Database caching: Application performance highly depends upon speed and
throughput provided by the database. Database caching allows you to increase
database throughput significantly and lower data retrieval latency. A database
cache can be applied in front of any kind of relational or non-relational database.
Some database providers integrate caching, while applications handle local
caching.

[168]

Solution Architecture Design Patterns Chapter 6

Redis and Memcached are the most popular caching engines. While Memcached is faster
(it is good for low-structure data and stores data in a key-value format), Redis is a more
persistent caching engine and is capable of handling complex data structures required for
an application such as a gaming leader board. Let's learn about a few more caching design
patterns.

Cache distribution pattern in a three-tier web
architecture

Traditional web hosting architecture implements a standard three-tier web application
model that separates the architecture into the presentation, application, and persistence
layers. As shown in the following architecture diagram, caching is applied at the
presentation, persistence, and application layers:

@AWS Cloud

Amazon r=]
=

Route 53 Amazon S3

Elastic Load,
Balancing

e m R S - S |
VPC i AutoScaImggroup i

1

E

12,

W

'30

15

g

100L|

1

1
(— — &

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

v
.

DI:I
D:I
Amawn EC2 Amazon EC2 Amazon EC2 D:l Key Value Store Amazon EC2 Amazon EC2 Amazon EC2
1
r.-------"--"-"-"-"-"-""-~--"-"-"-"-"“-""-“°-"“-°-°-°-=-°=-°=- _"_"_"_________"_"_—'_______"_"_"I
: Application Layer —» «— |
1
!] 1
1 {:} {3 i:} Auto Scaling group {:} {:} ' Amazon
| ! CloudFront
1
1
| Amazon EC2 Amazon m Amazon EC2 e mazon EC2 AmazonEC2 |

DE—

Users

Cache distribution pattern architecture

[169]

Solution Architecture Design Patterns Chapter 6

One of the ways you can offload your web page is through caching. In caching patterns,
your goal is to try to hit the backend as little as possible. You can write an application
where you can cache images, JavaScript, or even full pages to provide a better experience
for your users. As shown in the preceding diagram, caching is applied to the various layers
of architecture:

¢ Amazon Route 53 provides DNS services to simplify domain management and
to help cache DNS-to-IP mapping.

e Amazon S3 stores all static content such as high-resolution images and videos.

¢ Amazon CloudFront provides edge caching for high-volume content. It also uses
these cache-control headers to determine how frequently it needs to check the
origin for an updated version of that file.

e Amazon DynamoDB is used for session stores in which web applications cache
to handle user sessions.

e Elastic Load Balancing spreads traffic to web server Auto Scaling groups in this
diagram.

e Amazon ElastiCache provides caching services for the app, which removes the
load from the database tier.

In general, you only cache static content; however, dynamic or unique content affects the
performance of your application. Depending on the demand, you might still get some
performance gain by caching the dynamic or unique content. Let's take a look at a more
specific pattern.

Rename distribution pattern

When using a content distribution network (CDN) such as Amazon CloudFront, you store
frequently used data in an edge location near to the user for fast performance. Often, you
set up TTL in CDN for your data, which means the edge location will not query back to the
server for updated data until TTL expires. You may have situations where you need to
update CDN cached content immediately, for example, if you need to correct the wrong
product description.

[170]

Solution Architecture Design Patterns Chapter 6

In such a situation, you can't wait for the file's TTL to expire. The rename distribution
pattern helps you to update the cache as soon as new changes are published so that the user
can get updated information immediately. The following diagram shows the rename
distribution pattern:

3. CloudFront gets latest
version from origin server

AWS Cloud
Amazon CloudFront Amazon 53 bucket 1.Place new data with

new file name

. I L1 Ll
g <
m -

TITT1T

EVE

TTTTT

2. Distribute page with Web App
updated URL

Rename distribution pattern architecture

As shown in the preceding diagram, using the rename distribution pattern with the cache
distribution pattern helps to solve the update issue. With this pattern, instead of
overwriting the file in the origin server and waiting for the TTL in CloudFront to expire, the
server uploads the updated file with a new filename and then updates the web page with
the new URL. When the user requests original content, CloudFront has to fetch it from the
origin and can't serve the obsolete file that's already cached.

You may not always want to use a CDN; instead, you can use the proxy cache server. Let's
learn more about it in the next section.

Cache proxy pattern

You can increase your application performance significantly by adding a cache layer. In a
cache proxy pattern, static content or dynamic content is cached upstream of the web app
server. As shown in the following architectural diagram, you have a caching layer in front
of the web application cluster:

[171]

Solution Architecture Design Patterns Chapter 6

User

AWS Cloud

Elasiic Load Balancer

B s ~ N

Web App Web App Web App

Cache proxy pattern architecture

In the preceding diagram, for high-performance delivery, cache content is delivered by the
cache server. A few benefits of cache proxy patterns are as follows:

¢ Cache proxy patterns help you to deliver content using the cache, which means
no modification is needed at the web server or application server level.

e They reduce the load of content generation for dynamic content in particular.

¢ You have the flexibility to set up a cache at the browser level such as in HTTP
headers, URLs, cookies, and more. Alternatively, you can cache information in
the cache layer if you don't want to store it at the browser level.

In the cache proxy pattern, you need to make sure that you maintain multiple copies of the
cache to avoid the single point of failure. Sometimes, you may want to serve your static
content from both the server and CDN, each of which requires a different approach. Let's
deep dive into this hybrid situation in the next section.

[172]

Solution Architecture Design Patterns Chapter 6

Rewrite proxy pattern

Sometimes, you want to change the access destinations of static website content such as
images and videos, but don't want to make changes to the existing systems. You can
achieve this by providing a proxy server using rewrite proxy patterns. To change the
destination of static content to other storage such as content service or internet storage, you
can use a proxy server in front of the web server fleet. As shown in the following
architecture diagram, you have a proxy server in front of your application layer, which
helps to change the content delivery destination without modifying the actual application:

User
AWS Cloud

Elasfic Load
Balancing

S / _______ g%fzj-h_ltp?y{cgqhest ipg"f>
ayhnat '
!

Amazon $3 Bucket Web App \Web App

CloudFrent

Rewrite proxy pattern architecture

As shown in the preceding diagram, to accomplish a rewrite proxy pattern, place the proxy
server in front of the currently running system. You can construct a proxy server using
software such as Apache NGINX. The following are the steps to build a rewrite proxy
pattern:

1. Put a running proxy server on an EC2 instance, which is able to overwrite the
content between the Load balancer and the storage service such as Amazon S3,
which stores the static content.

2. Add to the proxy server rules for overwriting URLs within the content. These
rules will help Elastic Load Balancing (ELB) to point to a new location, as shown
in the preceding diagram, which redirects the proxy server rule from
https://cdn/test.jpgto /test.jpg.

[173]

Solution Architecture Design Patterns Chapter 6

3. As required, apply Auto Scaling to the proxy servers by configuring a number of
minimum and maximum proxy servers needed as per application load.

In this section, you learned about various ways to handle caching for static content
distribution over the network. However, caching at the application layer is very important
for improving application performance for overall user experience. Let's learn more about
the app caching pattern to handle dynamic user data delivery performance.

App caching pattern

When it comes to applying caching to applications, you want to add a cache engine layer
between your application servers and the database. The app caching pattern allows you to
reduce the load on the database as the most frequent query is served from the caching
layer. The app caching pattern improves overall application and database performance. As
shown in the following diagram, you can see the caching layer applied between the

application layer and the database layer:
Elastic Load Balancing

1
App Server request datdI
to caching Engine and if
data not available in the,
cache get data from 1
database :

Auto Scaling group

Application Server Fleet

Caching engine load
data into cache and
serve feature request

\) from cached data
Caching layer

Qg

Caching layer in front of :
database reduce hit into :
database ,Thus improve 1
overall application |
Amazon RDS performance. :

Application caching pattern architecture

[174]

Solution Architecture Design Patterns Chapter 6

As shown in the preceding diagram, based on your data access pattern, you can

use either lazy caching or write-through. In lazy caching, the cache engine checks whether
the data is in the cache and, if not, gets it from the database and keeps it in the cache to
serve future requests. Lazy caching is also called the cache aside pattern.

In the write-through method, data is written in the cache and in the data store at the same
time. If the data gets lost from the cache, then it can get it again from the database. Write-
through is used mainly in application-to-application situations where users are writing a

product review (which always needs to load on the product page). Let's learn more about
the popular caching engines Redis and Memcached.

Memcached versus Redis

Redis and Memcached are two popular caching engines used in application design. Often,
the Redis cache engine is required for more complex application caching needs such as
creating a leader board for a game. However, Memcached is more high-performing and is
helpful for handling heavy application loads. Each caching engine has its own pros and
cons. Let's take a look at the major differences between them, which will help you to make a
decision of which to use:

Memcached Redis

Offers multithreading Single-threaded

Able to use more CPU core for faster processing Unable to utilize multi-core processor, which results in comparatively slow
performance

Supports key-value style data Supports complex and advance data structures

Lacks data persistence; loses the data stored in cache memory in the event of a

rash Data can persist using built-in read replicas with failover

Easy maintenance More complexity involved owing to the need to maintain the cluster

Good to cache flat strings such as flat HTML pages, serialized JSON, and more|Good to create a cache for a gaming leader board, a live voting app, and more

Overall, if you need to decide which engine to use, base it on a use case that can justify
using Redis or Memcached. Memcached is simple and has lower maintenance, and it is
typically preferred when your cache doesn't need the advanced features that Redis offers.
However, if you need the advantage of data persistence, advanced data types, or any of the
other features listed, then Redis is the best solution.

When implementing caching, it's essential to understand the validity of data that needs to
be cached. If the cache hit rate is high, that means the data is available in the cache when
required. For a higher cache hit ratio, offload the database by reducing direct queries; this
also improves the overall application performance. A cache miss occurs when data is not
present in the cache and this increases the load in the database. The cache is not a large data
store, so you need to set the TTL and evict the cache as per your application need.

[175]

Solution Architecture Design Patterns Chapter 6

As you have seen in this section, there are multiple benefits of applying caches, including
application performance improvement, the ability to provide predictable performance, and
the reduction in database cost. Let's learn about some more application-based architecture
that demonstrates the principle of loose coupling and constraint handling.

Understanding the circuit breaker pattern

It's common for a distributed system to make a call to other downstream services, and the
call could fail or hang without response. You will often see code that retries the failed call
several times. The problem with a remote service is that it could take minutes or even hours
to correct, and an immediate retry might end up in another failure. As a result, end users
wait longer to get an error response while your code retries several times. This retry
function would consume the threads, and it could potentially induce a cascading failure.

The circuit breaker pattern is about understanding the health of downstream dependencies.
It detects when those dependencies are unhealthy and implements logic to gracefully fail
requests until it detects that they are healthy again. The circuit breaker can be implemented
using a persistence layer to monitor healthy and unhealthy requests over the past request
interval.

If a defined percentage of requests observe an unhealthy behavior over the past interval or
over a total count of exceptions, regardless of percentage, the circuit marks as open. In such
a situation, all requests throw exceptions rather than integrate with the dependency for a
defined timeout period. Once the timeout period has subsided, a small percentage of
requests try to integrate with the downstream dependency, to detect when health has
returned. Once a sufficient percentage of requests are healthy again over an interval, or no
errors are observed, the circuit closes again, and all the requests are allowed to integrate as
they usually would thoroughly.

The implementation decisions involve the state machine to track/share the
healthy/unhealthy request counts. The states of services can be maintained in DynamoDB,
Redis/Memcached, or another low-latency persistence store.

Implementing the bulkheads pattern

Bulkheads are used in ships to create separate watertight compartments that serve to limit
the effect of failure, ideally preventing the ship from sinking. If water breaks through the
hull in one compartment, the bulkheads prevent it from flowing into other compartments,
limiting the scope of the failure.

[176]

Solution Architecture Design Patterns Chapter 6

The same concept is useful to limit the scope of failure in the architecture of large systems,
where you want to partition your system to decouple dependencies between services. The
idea is that one failure should not cause the entire system to fail, as shown in the following

diagram:
Service 1 Service 2 l Service d J penrce S

Service 3 Service 3 Service 3
Pool 1 Pool 2

Bulkhead pattern

In the bulkhead pattern, it's better to isolate the element of the application into the pool for
service, which has a high dependency; so, if one fails, others continue to serve upstream
services. In the preceding diagram, Service 3 is partitioned into two pools from a single
service. Here, if Service 3 fails, then the impact of either Service 1 or Service 2 depends on
their dependency on the pool, but the entire system does not go down. The following are
the major points to consider when introducing the bulkhead pattern in your design,
especially for the shared service model:

e Save part of the ship, which means your application should not shut down due
to the failure of one service.

¢ Decide whether less-efficient use of resources is okay. Performance issues in one
partition should not impact the overall application.

e Pick a useful granularity. Don't make the service pools too small; make sure they
are able to handle application load.

¢ Monitor each service partition performance and adhere to the SLA. Make sure all
of the moving parts are working together and test the overall application when
one service pool is down.

You should define a service partition for each business or technical requirement. You
should use this pattern to prevent the application from cascading failure and isolating
critical consumers from the standard consumer.

Often, legacy application servers have a configuration with hardcoded Internet

Protocol (IP) addresses or Domain Name Server (DNS) names. Making any server change
for modernization and upgrade requires making changes in application and revalidating it.
In these cases, you don't want to change the server address. Let's learn how to handle such
a situation with a floating IP in the next section.

[177]

Solution Architecture Design Patterns Chapter 6

Creating a floating IP pattern

It's common that monolithic applications have lots of dependencies on the server where
they are deployed. Often, application configuration and code have hardcoded parameters
based on server DNS name and IP address. Hardcoded IP configuration creates challenges
if you want to bring up a new server in case of an issue with the original server.
Additionally, you don't want to bring down the entire application for the upgrade, which
may cause significant downtime.

To handle such a situation, you need to create a new server keeping the same server IP
address and DNS name. It can be achieved by moving the network interface from a
problematic instance to the new server. The network interface is generally a Network
Interface Card (NIC), which facilitates communication between servers over a network. It
can be in the form of hardware or software. Moving network interface means that now your
new server assumes the identity of the old server. With that, your application can live with
the same DNS and IP address. It also allows easy rollback by moving the network interface
to the original instance.

The public cloud (for example, AWS) made it easy by providing Elastic IP (EIP) and Elastic
Network Interface (ENI). If your instance fails and you need to push traffic to another
instance with the same public IP address, then you can move the elastic IP address from
one server to another, as shown in the following architecture diagram:

Amazon Route 53 Amazon Route 53

H- Elastic IP Address

Elastic Network

] Interface

i i

Floating IP and interface pattern

o

[178]

Solution Architecture Design Patterns Chapter 6

Since you are moving EIP, the DNS may not need to update. EIP can move your server's
public IP across instances. If you need to move both public and private IP addresses, then
use a more flexible approach such as ENI, as shown on the right of the preceding diagram.
ENI can move across instances, and you can use the same public and private address for
traffic routing or application upgrades.

So far, you have learned multiple architecture patterns where applications are deployed in
the virtual machine. However, in many cases, you may not be able to utilize the virtual
machine fully. To optimize your utilization further, you can choose to deploy your
application in containers. Containers are most suitable for microservice deployment. Let's
learn more about a container-based deployment in the next section.

Deploying an application with a container

As many programming languages are invented and technologies evolve, this creates new
challenges. There are different application stacks that require different hardware and
software deployment environments. Often, there is a need to run applications across
different platforms and migrate from one to another platform. Solutions require something
that can run anything everywhere and is consistent, lightweight, and portable.

Just as shipping containers standardized the transport of freight goods, software containers
standardize the transport of applications. Docker creates a container that contains
everything a software application would need to be able to run all of its files, such as
filesystem structure, daemons, libraries, and application dependencies. Containers isolate
software from its surrounding development and staging environments. This helps to
reduce conflicts between teams running different software on the same infrastructure.

VMs isolate at the operating system level, and containers isolate at the kernel level. This
isolation allows several applications to run on a single-host operating system, and yet still
have their filesystem, storage, RAM, libraries, and, mostly, their own view of the system:

[179]

Solution Architecture Design Patterns Chapter 6

ST | | | | | |
- Bins/Libs Bin/Libs

Server (Host) Server (Host)

Virtual Machine Containers

Virtual machines and containers for application deployment

As shown in the preceding diagram, multiple applications are deployed in a single virtual
machine using containers. Each application has its runtime environment, so you can run
many individual applications while keeping the same number of servers. Containers share
a machine's operating system kernel. They start instantly and use less computing time and
RAM. Container images are constructed from the filesystem layers and share standard files.
Shared resourcing minimizes disk usage, and container image downloads are much faster.
Let's take a look at why containers are becoming more popular along with their benefits.

The benefit of containers

Customers often ask these questions when it comes to containers:

¢ Why do we need containers when we have instances?

¢ Don't instances already provide us with a level of isolation from the underlying
hardware?

While the preceding questions are valid, several benefits accrue from using a system such
as Docker. One of the key benefits of Docker is that it allows you to fully utilize your virtual
machine resources by hosting multiple applications (on distinct ports) in the same instance.

[180]

Solution Architecture Design Patterns

Chapter 6

Docker uses certain features of the Linux kernel, namely kernel namespaces and groups, to
achieve complete isolation between each Docker process, as indicated in the following

architecture diagram:

A5 . t}\. 45
y S 'e., ' i - y 2 ;_,
L, A o
Application ication Application
s ik ks
Container @& Container @&, Container &

_Container Runtime

0S5 kernel

Host Operating System

Physical server

L.

Container layer in application infrastructure

As shown in the preceding diagram, it's possible to run two or more applications that
require different versions of the Java runtime on the same machine, as each Docker
container has its version of Java and the associated libraries installed. In turn, the container
layer in the application infrastructure makes it easier to decompose your applications into
microservices that can run side by side on the same instance. Containers have the following
benefits:

e Portable runtime application environment: Containers provide platform-
independent capabilities, where you build your application once and deploy it
anywhere regardless of the underlying operating system.

e Faster development and deployment cycles: Modify the application and run it
anywhere with quick boot time, typically within seconds.

e Package dependencies and application in a single artifact: Package the code,
library, and dependencies together to run the application in any operating
system.

[181]

Solution Architecture Design Patterns Chapter 6

¢ Run different application versions: Applications with different dependencies
run simultaneously in a single server.

¢ Everything can be automated: Container management and deployment is done
through scripting, which helps to save cost and human error.

¢ Better resource utilization: Containers provides efficient scaling and high
availability with multiple copies of the same microservice container can be
deployed across servers for your application.

¢ Easy to manage the security aspect: Containers are platform-specific rather than
application-specific.

Container deployment is becoming very popular due to its benefits. There are multiple
ways to orchestrate containers. Let's look at container deployment in more detail next.

Container deployment

Complex applications with multiple microservices can be quickly deployed using container
deployment. The container makes it easier to build and deploy the application more
quickly as the environment is the same. Build the container in development mode, push to
test, and then release to production. For hybrid cloud environments, container deployment
is very useful. Containers make it easier to keep environments consistent across
microservices. As microservices aren't always very resource-consuming, they can be placed
together in a single instance to reduce cost.

Sometimes, customers have short workflows that require a temporary environment setup.
Those environments may be queue systems or continuous integration jobs, which don't
always utilize server resources efficiently. Container orchestration services such as Docker
and Kubernetes can be a workaround, allowing them to push and pop containers onto the
instance.

Docker's Lightweight container virtualization platform provides tools to manage your
applications. Its stand-alone application can be installed on any computer to run containers.
Kubernetes is a container orchestration service that works with Docker and another
container platform. Kubernetes allows automated container provisioning and handles
security, networking, and scaling aspects diligently.

[182]

Solution Architecture Design Patterns Chapter 6

Containers help the enterprise to create more cloud-native workloads, and public cloud
providers such as AWS extend services to manage Docker containers and Kubernetes. The
following diagram shows Docker's container management using Amazon Elastic
Containers Service (ECS), providing a fully managed elastic service to automate the
scaling and orchestration of Docker containers:

|EC2 INSTANCES |
|TASK]| |TASK]
e L e
2 &
Internet |Container| |Container|
ITASK| |[TASK
—
2| &
o o
|Container| |Container|
ITASK| |[TASK]
., — | |a| |&
e e | | e |
|Container| |Container|

Container deployment architecture

In the preceding diagram, multiple containers are deployed in a single Amazon EC2 virtual
machine, which is managed through Amazon ECS and facilitates Agent Communication
Service and cluster management. All user requests are distributed using a load balancer
among the containers. Similarly, AWS provides Amazon Elastic Kubernetes Service (EKS)
to manage containers using Kubernetes.

Containers are a broad topic, and, as a solution architect, you need to be familiar with all of
the available options. This section provides an overview of containers. However, you will
need to deep dive further if you choose to utilize containers for your microservice
deployment.

[183]

Solution Architecture Design Patterns Chapter 6

As of now, you have learned about various architecture patterns focusing on application
development. Everyone has to agree that data is an integral part of any architecture design,
and most of the architecture revolves around collecting, storing, and processing the
visualization of data. Let's learn more about handling data in application architecture in the
next section.

Database handling in application
architecture

Data is always at the center of any application development, and scaling data has always
been challenging. Handling data efficiently improves application latency and performance.
In the previous section, Building cache-based architecture, you learned how to handle
frequently queried data by putting a cache in front of your database under the app caching
pattern. You can put either a Memcached or Redis cache in front of your database, which
reduces the many hits on the database and results in improving database latency.

In application deployment, as the user base of your application grows, you need to handle
more data by your relational database. You need to add more storage or vertically scale the
database server by adding more memory and CPU power. Often, horizontal scaling is not
very straightforward when it comes to scaling relational databases. If your application is
read-heavy, you can achieve horizontal scaling by creating a read replica. Route all read
requests to database read replicas, while keeping the master database node to serve write
and update requests. As read replica has asynchronous replication, it can add some lag
time. You should choose to read the replica option if your application can tolerate some
milliseconds of latency. You can use read replica to offload reporting.

[184]

Solution Architecture Design Patterns Chapter 6

You can use database sharding to create a multi-master for your relational database and
inject the concept of horizontal scaling. The sharding technique is used to improve writing
performance with multiple database servers. Essentially, databases are prepared and
divided with identical structures using appropriate table columns as keys to distribute the
writing processes. As demonstrated in the following architecture diagram, the customer
database can be divided into multiple shards:

R_ A
K XN
Shard 1
Amazon RDS
MYSQAL
LLLLI
-_—
— o
First Name=JwR R %
- ‘IS
- Sharding = ¥ N
- Software -
Shard 2
Tfrfna Amazon RDS
Amazon EC2 MYSQL
KR_ A
K XN
Shard3
Amazon RDS
MYSQaL

Relational database sharding

As shown in the preceding diagram, without shards, all data resides in one partition; for
example, the user's first name starts with A to Z in one database. With sharding, data is
split into large chunks called shards. For example, user first name A to I is in one database,
J to R in another database, and S to Z in a third database. In many circumstances, sharding
gives you higher performance and better operating efficiency.

You can use Amazon RDS in sharding backend databases. Install sharding
software such as MySQL server combined with a Spider Storage Engine on
an Amazon EC2 instance. Then, first, prepare multiple RDS databases and
use them as the sharding backend databases.

However, what if your master database instance goes down? In that case, you need to
maintain high availability for your database. Let's take a closer look at database failover.

[185]

Solution Architecture Design Patterns Chapter 6

High-availability database pattern

For the high availability of your application, it is critical to keep your database up and
running all of the time. As horizontal scaling is not a straightforward option in the
relational database, it creates additional challenges. To achieve high database availability,
you can have a standby replica of the master database instance, as shown in the following
diagram:

[— [—
Read Replica E ym Read Replica

EJ

Amazon RDS Master Amazon RDS Standby

Availability Zone 1 Availability Zone 2

High-availability database pattern

As shown in the preceding diagram, if the master instance goes down, your application
server switches over to standby instance. Read replica takes the load off of master to handle
latency. Master and standby are located in different availability zones, so your application
will still be up even when an entire availability zone is down. This architecture also helps to
achieve zero downtime which may cause during the database maintenance window. When
a master instance is down for maintenance, the application can failover to secondary
standby instance and continue serving user request.

For the purpose of disaster recovery, you will want to define the database backup and
archival strategy, depending on your application's Recovery point object (RPO) of how
frequently you want to take backups. If your RPO is 30 minutes, it means your organization
can only tolerate data loss worth of 30 minutes. In that case, you should take a backup
every half an hour. While storing the backup, you need to determine how long the data can
be stored for customer query purposes. You may want to store data for six months as an
active backup and then in an archival store as per the compliance requirement.

Consider how quickly you might need to access your backup and determine the type of
network connection needed to meet your backup and recovery requirements as per the
company recovery time objective (RTO). For example, if your company's RTO is 60
minutes, it means you should have enough network bandwidth to retrieve and restore your
backup within an hour. Also, define whether you are backing up snapshots of complete
systems or volumes attached to systems.

[186]

Solution Architecture Design Patterns Chapter 6

You may also need to classify your data, for example, if it has customer-sensitive
information such as email, addresses, personally identifiable information, and more. You
need to define the data encryption strategy accordingly. You will learn more about data
security in Chapter 8, Security Considerations.

You can also consider migrating from an RDBMS to a NoSQL database depending upon
your application's growth and complexity. NoSQL can provide you with greater scalability,
management, performance, and reliability than most relational databases. However, the
process of migrating to NoSQL from an RDBMS can be time-consuming and labor-
intensive.

There is lots of data to process in any application, for example, clickstream data, application
log data, rating and review data, social media data, and more. Analyzing these datasets and
getting insight can help you to grow your organization exponentially. You will learn more
about these use cases and patterns in chapter 13, Data Engineering and Machine Learning. As
of now, you have learned about the best practices to design a solution architecture. Let's
learn about some anti-patterns, which should be avoided, in the next section.

Avoiding anti-patterns in solution
architecture

In this chapter, you have learned about a different way of designing solution architecture
with various design patterns. Often, the teams can drift away from best practices due to
timeline pressure or the unavailability of resources. You always need to give special
attention to the following architecture design anti-patterns:

e In an anti-pattern (an example of a poorly designed system), scaling is done
reactively and manually. When application servers reach their full capacity with
no more room, users are prevented from accessing the application. On user
complaints, the admin finds out that the servers are at their full capacity and
starts launching a new instance to take some of the load off. Unfortunately, there
is always a few minutes' lag between the instance launch and its availability.
During this period, users are not able to access the application.

e With anti-patterns, automation is missing. When application servers crash, the
admin manually launches and configures the new server and notifies the users
manually. Detecting unhealthy resources and launching replacement resources
can be automated, and you can even notify when resources are changed.

[187]

Solution Architecture Design Patterns Chapter 6

e With anti-patterns, the server is kept for a long time with hardcoded IP
addresses, which prevent flexibility. Over time, different servers end up in
different configurations and resources are running when they are not needed.
You should keep all of the servers identical and should have the ability to switch
to a new IP address. You should automatically terminate any unused resources.

e With anti-patterns, an application is built in a monolithic way, where all layers of
architecture including web, application, and data layers are tightly coupled and
server dependent. If one server crashes, it brings down the entire application.
You should keep the application and web layer independent by adding a load
balancer in between. If one of the app servers goes down, the load balancer
automatically starts directing all of the traffic to the other healthy servers.

e With anti-patterns, the application is server bound, and the server communicates
directly with each other. User authentication and sessions are stored in the server
locally and all static files are served from the local server. You should choose to
create an SOA, where the services talk to each other using a standard protocol
such as HTTP. User authentication and sessions should be stored in low latency-
distributed storage so that the application can be scaled horizontally. The static
asset should be stored in centralized object storage that is decoupled from the
server.

o With anti-patterns, a single type of database is used for all kinds of needs. You
are using a relational database for all needs, which introduces performance and
latency issues. You should use the right storage for the right need, such as the
following;:

NoSQL to store user session

Cache data store for low latency data availability

Data warehouse for reporting needs
Relation database for transactional data

e With anti-patterns, you will find a single point of failure by having a single
database instance to serve the application. Wherever possible, eliminate single
points of failure from your architectures. Create a secondary server (standby)
and replicate the data. If the primary database server goes offline, the secondary
server can pick up the load.

¢ With anti-patterns, static content such as high-resolution images and videos are
served directly from the server without any caching. You should consider using a
CDN to cache heavy content near the user location, which helps to improve page
latency and reduce page load time.

[188]

Solution Architecture Design Patterns Chapter 6

e With anti-patterns, you can find security loopholes that open server access
without a fine-grained security policy. You should always apply the principle of
least privilege, which means starting with no access and only giving access to the
required user group.

The preceding points provide some of the most common anti-patterns. Throughout this
book, you will learn the best practices of how to adopt them in solution design.

Summary

In this chapter, you learned about various design patterns by applying the techniques from
Chapter 3, Attributes of the Solution Architecture, and Chapter 4, Principles of Solution
Architecture Design. First, you built the architecture design foundation from a multilayer
architecture with a reference architecture from three-tier web application architecture. You
learned how to design a multi-tenant architecture on top of a three-tier architecture, which
can provide a SaaS kind of offering. You learned how to isolate multi-tenant architecture at
the database label, schema level, and table level as per customer and organization need.

User state management is very critical for complex applications such as finance, e-
commerce, travel booking, and more. You learned about the difference between stateful
and stateless applications and their benefits. You also learned how to create a stateless
application with a persistent layer of the database for session management. You learned
about the two most popular SOA patterns, SOAP-based and RESTful-based patterns, along
with their benefits. You looked at a reference architecture of an e-commerce website based
on SOA and learned how to apply the principle of loose coupling and scaling.

You learned about serverless architecture and how to design a secure survey delivery
architecture that is entirely serverless. You also learned about microservice architecture
using the example of a serverless real-time voting application, which builds on the
microservice pattern. For more loose coupling designs, you learned about queuing chain
and job observer patterns, which provide loosely coupled pipelines to process messages in
parallel. You learned about the pub/sub and event stream models to design event-driven
architecture.

[189]

Solution Architecture Design Patterns Chapter 6

It's not possible to achieve your desired performance without applying caching. You
learned about various cache patterns to apply to caches at the client side, content
distribution, web layer, application layer, and database layer. You learned architecture
patterns to handle failure such as a circuit breaker to handle the downstream service failure
scenario and bulkhead pattern to handle complete service failure. You learned about
floating IP patterns to change servers without changing their address in failure situations to
minimize downtime.

You learned about the various technique of handing data in an application and how to
make sure your database is highly available to serve your application. Finally, you learned
about various architecture anti-patterns and how to replace them using best practices.

While, in this chapter, you learned about various architecture patterns, in the next chapter,
you will learn about architecture design principles for performance optimization.
Additionally, you will deep dive into technology selection in the area of computing,
storage, databases, and networking, which can help to improve your application's
performance.

[190]

Performance Considerations

In this era of fast internet, users expect very high-performance applications. There have
been experiments that show that every second of application loads delay, cause a
significant loss in the revenue of an organization. Therefore, the performance of the
application is one of the most critical attributes of solution design that can impact your
product adoption growth.

In the previous chapter, you learned about various solution architecture design patterns
that can be used to solve a complex business problem. In this chapter, you will gain an
understanding of the best practices to optimize your application for optimal performance.
You will learn various design principles that you can use to optimize the solution
architecture's performance. Here, performance needs to be optimized at every layer and in
every component of the architecture. You will gain an understanding of how to choose

the right technology at various layers of your architecture for the continuous improvement
of your application's performance. You will learn how to follow the best practices of
performance optimization in this chapter. We will focus on the following topics in
particular:

e Design principles for architecture performance
e Technology selection for performance optimization
e Performance monitoring

By the end of the chapter, you will have an understanding of important attributes of
performance improvement, such as latency, throughput, and concurrency. You will be able
to make better decisions regarding your choice of technology, which can help you to
improve performance at the various layers of architecture, such as compute, storage,
database, and networking.

Performance Considerations Chapter 7

Design principles for architecture
performance

Architectural performance efficiency focuses on efficiently using application infrastructure
and resources to meet increasing demand and technology evaluation. Technology vendors
and open source communities continuously work to improve the performance of
applications. Often, large enterprises continue to work on legacy programming languages
and technologies because of fear of changing and taking risks. As technology evolves, it
often addresses critical performance issues, and the advancement of technology in your
application helps to improve application performance.

Many large public cloud providers, such as Amazon Web Service (AWS), Microsoft Azure,
and Google Cloud Platform (GCP), offer technology as a service. This makes it easier to
adopt enterprise jobs and complex technologies more efficiently and with minimal
effort—for example, you might use storage as a service to manage a massive amount of
data or a NoSQL database as a managed service to provide high-performance scalability to
your application.

Now organizations can utilize a content distribution network (CDN) to store heavy image
and video data near user locations to reduce network latency and improve performance.
With infrastructure as a service (IaaS), it becomes easier to deploy workloads closer to
your user base, which helps to optimize application performance by reducing latency over
the network.

As servers virtualize, you can be more agile and experiment with your application, and you
can apply a high degree of automation. Agility helps you to experiment and find out what
technology and method are best suited for your application workload—for example, my
server deployment should go for virtual machines or containers, or it can even go
completely serverless with the use of AWS Lambda, which is a Function as a Service
(FaaS). Let's look at some vital design principles to consider for your workload
performance optimization.

Reducing latency

Latency can be a major factor in your product adoption, as users are looking for faster
applications. It doesn't matter where your users are located, you need to provide a reliable
service for your product to grow. You may not be able to achieve zero latency, but the goal
should be to reduce response time within the user tolerance limit.

[192]

Performance Considerations Chapter 7

Latency is the time delay between the user sending a request and receiving the desired
response. As shown in the following diagram, it takes 600 ms for a client to send a request
to the server and 900 ms for the server to respond, which introduces a total latency of 1.5

seconds (1500 ms):

600ms

Y

!

Client 900ms Server

Request response latency in a client-server model

Most of the application needs to access the internet in order to have a diverse set of global
users. These users are expecting consistency in performance, regardless of their
geographical location. This is sometimes challenging, as it takes time to move data over the
network from one part of the world to another.

Network latency can be caused by various factors, such as the network transmission
medium, router hops, and network propagation. Oftentimes, a request that is sent over the
internet hops over multiple routers, which adds latency. Enterprises commonly use their
fiber optics line to set up connectivity between their corporate network or cloud, which
helps to avoid inconsistency.

In addition to the problems caused by the network, latency can also be caused by various
components of the architecture. At the infrastructure level, your compute server can have
latency issues due to memory and processor problems, where the data transfer between the
CPU and RAM is slow. The disk can have latency due to slow read and write. Latency in a
hard disk drive (HDD) is dependent on the time it takes to select a disk memory sector to
come around and position itself under the head for reading and writing.

The disk memory sector is the physical location of data in the memory
disk. In an HDD, data is distributed in memory sectors during write
operations, as the disk is continuously rotating, so data can be written
randomly. During the read operation, the head needs to wait for the
rotation to bring it to the disk memory sector.

[193]

Performance Considerations Chapter 7

At the database level, latency can be caused by slow data reads and writes from the
database due to hardware bottlenecks or slow query processing. Taking the database load
off by distributing the data with partitioning and sharding can help to reduce latency. At
the application level, there could be an issue with transaction processing from code that
needs to be handled using garbage collection and multithreading. Achieving low latency
means higher throughput, as latency and throughput are directly related, so let's learn more
about throughput.

Improving throughput

Throughput is the quantity of data that is sent and received at a given time, while latency is
defined as the time between when the user initiates a request in the application and
receives the response from the application. When it comes to networks, bandwidth plays an
important role.

Bandwidth determines the maximum number of data that can get
transferred over the network.

Throughput and latency have a direct relationship as they work together. Lower latency
means high throughput as more data can transfer in less time. To understand this better,
let's take the analogy of a country's transportation infrastructure.

Let's say that highways with lanes are network pipelines and cars are data packets.
Suppose a given highway has 16 lanes between 2 cities, but that not all vehicles can reach
the destination at the desired time; they may get delayed because of traffic congestion,
lanes closing, or accidents. Here, latency determines how fast a car can travel from one city
to another, while throughput tells us how many cars can reach their destinations. For a
network, using full bandwidth is challenging because of error and traffic congestion.

Network throughput transfers a significant amount of data over the network in bits per
second (bps). Network bandwidth is the maximum size of the network pipeline, which it
can process. The following diagram illustrates the amount of data transferred between
client and server:

[194]

Performance Considerations Chapter 7

Message Packet

Server

Client

Throughput in a network

In addition to the network, the throughput is applicable at the disk level. Disk throughput
is determined by a factor of input/output per second (IOPS) and the amount of data
requested (I/O size). Disk throughput is determined in megabytes per second using the
following formula:

Average 10 size x IOPS = Throughput in MB/s

So, if your disk IOPS is 20,000 IOPS and the I/O size is 4 KB (4096 bytes), then the
throughput will be 81.9 MB/s (20,000 x 4096 and converted from bytes to megabytes).

Input/output (I/O) requests and disk latency have a direct relationship. I/O means write
and read respectively, while disk latency is the time taken by each I/O request to receiving
the response from the disk. Latency is measured in milliseconds and should be minimal.
This is impacted by disk revolution per minute (RPM). The IOPS is the number of
operations that the disk can serve per second.

The throughput, also applicable at CPU and memory level, is determined by the amount of
data transfer between the CPU and RAM per second. At the database level, throughput is
determined by the number of transactions a database can process per second. At the
application level, your code needs to handle transactions that can be processed every
second by managing the application memory with the help of garbage collection handling
and efficient use of the memory cache.

As you learned when you looked at latency, throughput, and bandwidth, there is another
factor called concurrency, which is applicable to the various components of architecture
and helps to improve application performance. Let's learn more about concurrency.

[195]

Performance Considerations Chapter 7

Handling concurrency

Concurrency is a critical factor for solution design as you want your application to process
multiple tasks simultaneously—for example, your application needs to handle multiple
users simultaneously and process their requests in the background. Another example is
when your web user interface needs to collect and process web cookie data to understand
user interaction with the product while showing users to their profile information and
product catalog. Concurrency is about doing multiple tasks at the same time.

People often get confused between parallelism and concurrency by thinking that

they are both the same thing; however, concurrency is different from parallelism. In
parallelism, your application divides an enormous task into smaller subtasks, which it can
process in parallel with a dedicated resource for each subtask. In concurrency, however, an
application processes multiple tasks at the same time by utilizing shared resources among
the threads. The application can switch from one task to another during processing, which
means that the critical section of code needs to be managed using techniques such as locks
and semaphores.

As illustrated in the following diagram, concurrency is like a traffic light signal where
traffic flow switches between all four lanes to keep traffic going. As there is a single thread
along which you should pass all traffic, processing in other lanes has to stop while traffic in
one lane is in the clearing process. In the case of parallelism, there is a parallel lane available,
and all cars can run in parallel without interrupting each other, as shown in the following
diagram:

Parallelism

Concurrency versus parallelism

[196]

Performance Considerations Chapter 7

In addition to transaction processing at the application level, concurrency needs to apply at
the network level where multiple servers share the same network resources. For a web
server, there is a need to handle many network connections when users try to connect to it
over the network. It needs to process the active request and close the connection for the
completed or timeout request. At the server level, you will see multiple CPUs assigned or a
multicore processor. These help in handling concurrency as the server can handle more
threads to complete various tasks simultaneously.

At the memory level, the shared memory concurrency model helps to achieve concurrency.
In this model, the concurrent modules interact with each other using shared memory. It
could be two programs running in the same server and sharing filesystems where they can
read and write. Also, there could be two processors or processor cores sharing the same
memory. The disk in your server can encounter concurrency situations where two
programs try to write to the same memory block. Concurrent I/O helps to improve disk
concurrency by allowing the disk to read and write a file simultaneously.

The database is always a central point of architecture design. Concurrency plays an
essential role in data handling as the database should have the ability to respond to
multiple requests simultaneously. Database concurrency is more complicated as one user
might be trying to read a record while another user is updating it at the same time. The
database should only allow data viewing when it gets fully saved. Make sure that the data
is completely committed before another user tries to update it. Caching can help to improve
performance significantly; let's learn about some different cache types in architecture.

Apply caching

In chapter ¢, Solution Architecture Design Patterns, you learned how to apply caching at
various levels of architecture in the Cache-based architecture section. Caching helps to
improve application performance significantly. Although you learned the different design
patterns to apply to the cache by adding an external caching engine and technology, such as
a content distribution network (CDN), it's essential to understand that almost every
application component and infrastructure have their cache mechanism. Utilizing the build-
caching mechanism at each layer can help to reduce latency and improve the performance
of the application.

[197]

Performance Considerations Chapter 7

At the server level, the CPU has its hardware cache, which reduces the latency when
accessing data from the main memory. The CPU cache includes the instruction and data
cache, where the data cache store copies frequently used data. The cache is also applied at
the disk level, but it is managed by operating system software (known as the page cache);
however, the CPU cache is entirely managed by hardware. The disk cache is originating
from secondary storage, such as the hard disk drive (HDD) or solid-state drive (SSD).
Frequently used data is stored in an unused portion of the main memory (that is, the RAM
as page cache, which results in quicker access of content).

Oftentimes, the database has a cache mechanism that saves the results from the database to
respond faster. The database has an internal cache that gets data ready in the cache based
on the pattern of your use. They also have a query cache that saves data in the main server
memory (RAM) if you make a query more than once. The query cache gets cleared in case
of any changes in data inside the table. In the case that the server runs out of memory, the
oldest query result gets deleted to make space.

At the network level, you have a DNS cache, which stores the web domain name and
corresponding IP address local to the server. DNS caching allows a quick DNS lookup if
you revisit the same website domain name. The DNS cache is managed by the operating
system and contains a record of all recent visits to websites. You learned about client-side
cache mechanisms such as the browser cache and various caching engines like Memcached
and Redis in chapter 6, Solution Architecture Design Patterns.

In this section, you learned about the original design factors, such as latency, throughput,
concurrent, and caching, which need to be addressed for architecture performance
optimization. Each component of the architecture (whether it is a network at the server
level or an application at the database level) has a certain degree of latency and a
concurrency issue that needs to be handled.

You should design your application for the desired performance, as improving
performance comes with a cost. The specifics of performance optimization may differ from
application to application. Solution architecture needs to direct the effort accordingly—for
example, a stock-trading application cannot tolerate sub-millisecond latency, while an e-
commerce website can live with a couple of seconds latency. Let's learn about selecting
technology for various architecture levels to overcome performance challenges.

[198]

Performance Considerations Chapter 7

Technology selection for performance
optimization

In chapter 6, Solution Architecture Design Patterns, you learned about various design
patterns, including microservice, event-driven, cached-based, and stateless. An
organization may choose a combination of these design patterns depending on their
solution's design needs. You can have multiple approaches to architecture design
depending on your workload. Once you finalize your strategy and start solution
implementation, the next step is to optimize your application. To optimize your
application, you need to collect data by performing load testing and defining
benchmarking as per your application's performance requirements.

Performance optimization is a continuous improvement process, one in which you need to
take cognizance of optimal resource utilization from the beginning of solution design to
after the application's launch. You need to choose the right resources as per the workload or
tweak the application and infrastructure configuration—for example, you may want to
select a NoSQL database to store the session state for your application and store
transactions in the relational database.

For analytics and reporting purposes, you can offload your production database by loading
data from the application database to data warehousing solutions and create reports from
there. In the case of servers, you may want to choose a virtual machine or containers. You
can take an entirely serverless approach to build and deploy your application code.
Regardless of your approach and application workload, you need to choose the primary
resource type, which includes computing, storage, database, and network. Let's look at
more details on how to select these resources type for performance optimization.

Making a computational choice

In this section, you will see the use of the term compute instead of the server, as nowadays
software deployments are not limited to servers. A public cloud provider such as AWS has
serverless offerings, where you don't need a server to run your application. One of the most
popular Faa$ offerings is AWS Lambda. Similar to AWS Lambda, other popular public
cloud providers extend their offerings in FaaS space—for example, Microsoft Azure has
Azure Functions and Google Cloud Platform (GCP) offers Google Cloud functions.

[199]

Performance Considerations Chapter 7

However, organizations still make the default choice to go for servers with virtual
machines. Now, containers are also becoming popular as the need for automation and
resource utilization is increased. Containers are becoming the preferred choice, especially in
the area of microservice application deployment. The optimal choice of
computing—whether you want to choose server instances, containers, or go for
serverless—depends upon application use cases. Let's look at the various compute choices
available.

Selecting the server instance

Nowadays, the term instance is getting more popular as virtual servers become norms.
These virtual servers provide you flexibility and better use of resources. Particularly for
cloud offerings, all cloud providers offer you virtual servers, which can be provisioned
with a mere click on a web console or API call. The server instance helps in automation and
provides the concept of infrastructure as a code, where everything can be automated
everywhere.

As your workload varies, there is a different kind of processing unit choice available. Let's
look at some of the most popular options of processing power:

e Central processing unit (CPU): The CPU is one of the most popular computing
processing choices. CPUs are easy to program, they enable multitasking, and,
most importantly, are versatile enough to fit anywhere, which makes them a
preferred choice for the general-purpose application. The CPU function is
measured in GHz (giga hertz), which indicates that the clock rate of the CPU
speed is in billions of cycles per second. CPUs are available at a low cost;
however, they are not able to perform well for parallel processing as CPUs have
the primary capabilities of sequential processing.

¢ Graphical processing unit (GPU): As the name suggests, the GPU was designed
initially to process graphics applications, and is able to provide massive
processing power. As the volume of data grows, it needs to process data by
utilizing massive parallel processing (MPP). For large data processing use cases,
such as machine learning, GPUs have become the obvious choice, and are used in
a wide range of compute-intensive applications. You may have heard of the tera
floating point operation (TFLOP) as a unit of computation power for GPUs. A
teraflop refers to the processor capability to calculate one trillion floating-point
operations per second.

[200]

Performance Considerations Chapter 7

GPUs consist of thousands of smaller cores compared to CPUs, which have very
few lager cores. GPUs have a mechanism to create thousands of threads using
CUDA programming, and each thread can process data in parallel, which makes
processing super fast. GPUs are a bit costlier than CPUs. When it comes to
processing capabilities, you will find that GPUs are in the sweet spot of cost and
performance for an application that requires image analysis, video processing,
and signal processing; however, they consume lots of power and may not work
with a specific type of algorithm where more customized processors are required.

e Field-programmable gate array (FPGA): FPGAs are very different to CPUs or
GPUs. They are programmable hardware with a flexible collection of logic
elements that can be reconfigured for the specific application, which can be
changed after installation. FPGAs consume much less power than GPUs but are
also less flexible. They can accommodate massive parallel processing and also
provide a feature to configure them as CPUs.

Overall, the FPGA cost is higher, as they need to be customized for each
individual application and require a longer development cycle. FPGAs may
perform poorly for sequential operations and are not very good for flops (float
point operations).

e Application-specific integrated circuit (ASIC): ASICs are purpose built, and
custom integrate circuit optimization for a specific application—for example,
specific to the deep learning TensorFlow package, which Google provides as
a tensor processing unit (TPU). They can be custom designed for the
applications to achieve an optimum combination of power consumption and
performance. ASICs incur high costs because of the most extended development
cycle, and you have to perform a hardware-level redesign for any changes.

[201]

Performance Considerations Chapter 7

The following diagram shows a comparison between the types of processing mentioned in
the preceding list. Here, the ASIC is most efficient, but takes a longer development cycle to
implement. ASICs provide the most optimal performance but have the least flexibility to
reutilize, while CPUs are very flexible and can fit major use cases:

Flexibility

Efficiency

Comparison between CPUs, GPUs, FPGAs, and ASICs

As shown in the preceding diagram, judging by the prospective cost, CPUs are the cheapest
and ASICs are the costliest. Today, the CPU has become a commodity and is used
everywhere for general-purpose devices to keep costs lower. The GPU has become famous
for compute-intensive applications and The FPGA has become the first choice where more
customized performance is required. You will see these processing choices available over
public cloud providers, such as AWS. In addition to CPUs, their Amazon Elastic Cloud
Compute (EC2) offering provides a P-series instance that has a heavy use of the GPU and F-
series instance provides FPGAs for custom hardware acceleration.

In this section, you learned about the most popular compute choice. You may hear about
other types of processor, such as the accelerated processing unit (APU). The APU is a
combination of the CPU, GPU, and digital signal processor (DSP), which is optimized to
analyze analog signals and then requires high-speed processing of data in real time. Let's
learn more about other popular compute type containers that are gaining popularity
rapidly because of the optimization of the use of resources within the virtual machine.

[202]

Performance Considerations Chapter 7

Working with containers

In chapter 6, Solution Architecture Design Patterns, you learned about container deployment
and their benefits under the section titled Deploying an application with a container. The use of
containers is becoming the norm to deploy complex microservice applications because of
the ease of automation and the efficiency of resource utilization. There are various
platforms available for container deployment. Let's learn about some of the most popular
choices in the area of the container, their differences, and how they work together.

Docker

Docker is among one of the most in-demand technologies. It allows you to package an
application and its related dependencies together as a container and deploy it to any
operating system platform. As Docker provides platform-independent capabilities to a
software application, this makes the overall software development, testing, and
deployment process simplified and more accessible.

Docker container images are portable from one system to another over a local network or
across the internet using Docker Hub. You can manage and distribute your container using
a Docker Hub container repository in case you make any changes in the Docker image that
cause issues in your environment. It's easy to revert to the working version of the container
image, which makes overall troubleshooting easier.

Docker containers help you to build a more complex multilayer application—for example,
if you need to run the application server, database, and message queue together. You can
run them side by side using a different Docker image and then establish communication
between them. Each of these layers may have a modified version of libraries, and Docker
allows them to run on the same compute machine without conflict.

Public cloud providers, such as AWS, provide containers management platforms, such

as Amazon Elastic Container Service (ECS). Container management helps to manage
Docker containers on top of the cloud virtual machine, Amazon EC2. AWS also provides
the serverless option of container deployment using Amazon Fargate, where you can
deploy containers without provisioning virtual machines. Instead of Docker Hub, you can
use Amazon Elastic Container Repository (ECR) to manage your Docker imager in the
cloud.

Complex enterprise applications are built based on microservices that may span across
multiple containers. Managing various Docker containers as a part of one application can
be pretty complicated. Kubernetes helps to solve the challenges of the multicontainer
environment; let's learn more about Kubernetes.

[203]

Performance Considerations Chapter 7

Kubernetes

Kubernetes can manage and control multiple containers in production environments
compared to Docker, where you can only work with a few containers. You can consider
Kubernetes as a container orchestration system. You can host a Docker container in bare
metal, or a virtual machine node called a Docker host, and Kubernetes can co-ordinate
across a cluster of these nodes.

Kubernetes makes your application self-healing by replacing unresponsive containers. It
also provides horizontal scaling capabilities and a blue-green deployment ability to avoid
any downtime. Kubernetes distributes incoming user traffic load between the container and
manages the storage shared by various containers.

As shown in the following diagram, Kubernetes and Docker work well together to
orchestrate your software application. Kubernetes handles network communication
between Docker nodes and Docker containers:

- o

Docker Kubemetes Engine

m m] [] | (\
-IH-r uaEEn i masEE ‘ Network H Etcd H Kubelst ‘

Node 1 Node 2

Kubernetes Cluster

Docker and Kubernetes

[204]

Performance Considerations Chapter 7

Docker works as an individual piece of the application and Kubernetes takes care of the
orchestration to make sure all these pieces work together as designed. It's easier to
automate overall application deployment and scaling with Kubernetes. In Docker,
containers are hosted in nodes and each Docker container in a single node shares the same
IP space. In Docker, you need to manage the connections between containers by taking care
of any IP conflict. Kubernetes solves this problem by having a master instance that keeps
track of all nodes hosting containers.

Kubernetes's master node is responsible for assigning an IP address and hosting a
key—value store for container configuration along with Kubelet to manage the containers.
Docker containers are groups in the pod, where they share the same IP address. This entire
setup is called the Kubernetes cluster.

While Kubernetes is quickly becoming popular, there are other options available, such
as Docker Swarm, which is built by Docker itself; however, Swarm doesn't have a web-
based interface like Kubernetes, and also does not provide autoscaling and external load
balancing.

Kubernetes is more complex to learn. A public cloud provider, such as AWS, provides
Amazon Elastic Kubernetes Service (EKS) to simplify the management of the Kubernetes
cluster. OpenShift is another Kubernetes distribution managed by Red Hat and is offered
as a platform as a service (PaaS).

Overall, containers add a layer of virtualization to the whole application infrastructure.
While they are useful in resource utilization, you may want to choose a bare metal physical
machine for your application deployment if it requires ultra-low latency.

Going serverless

In recent years, serverless computing has become possible because of the popularity of
public cloud offerings by cloud providers such as Amazon, Google, and Microsoft.
Serverless computing allows the developers to focus on their code and application
development without worrying about underlying infrastructure provisioning,
configuration, and scaling. This abstracts server management and infrastructure decisions
from the developer and lets them focus on their area of expertise and the business problem
they are trying to solve. Serverless computing brings a relatively new concept of FaaS.

[205]

Performance Considerations Chapter 7

The Faa$ offering is available using services such as AWS Lambda, Microsoft Azure
Function, and Google Cloud Function. You can write your code in the cloud editor and
AWS Lambda handles the computing infrastructure underneath to run and scale your
function. You can design event-based architecture or RESTful microservices by adding an
API endpoint using Amazon API Gateway and AWS Lambda functions. Amazon API
Gateway is a managed cloud service that adds RESTful APIs and WebSocket APIs as
frontends for the Lambda functions and enables real-time communication between
applications. You can further break your microservice into small tasks that can be scaled
automatically and independently.

In addition to focusing on your code, you never have to pay for idle resources in the FaaS
model. Rather than scaling your entire service, you can scale the required functions
independently with built-in availability and fault tolerance; however, it could be a pretty
daunting task if you have thousands of features to orchestrate, and predicting the
autoscaling cost can be tricky. These are especially good for scheduling jobs, processing
web requests, or queuing messages.

In this section, you learned about the various computing choices, looking at server
instances, serverless options, and containers. You need to select these compute services
based on your application's requirement. There is no rule that forces you to choose a
particular type of computing; it is all about your choice of organization's technology, the
pace of innovation, and the nature of the software application.

However, in general, for the monolithic application, you can stick to a virtual or bare-metal
machine, and for complex microservices, you can choose containers. For simple task
scheduling or events-based applications, you can go for function as an obvious choice.
Many organizations have built complex applications that are entirely serverless, which
helped them to save costs and achieve high availability without managing any
infrastructure.

Let's learn about another important aspect of your infrastructure and how it can help you to
optimize performance.

[206]

Performance Considerations Chapter 7

Choosing a storage

Storage is one of the critical factors for your application's performance. Any software
application needs to interact with storage for installation, logging, and accessing files. The
optimal solution for your storage will differ based on the following factors:

Access methods Block, file, or object

Access patterns Sequential or random

Access frequency Online (hot), offline (warm), or archival (cold)

Update frequency Write once read many (WORM) or dynamic

Access availability Availability of storage when required

Access durability Reliability of data store to minimize any data loss

Access throughput Input/optput per second (IOPS) and data read/write per
second in MBs.

These depend upon your data format and scalability needs. You first need to decide
whether your data will be stored in block, file, or object storage. These are the storage
formats that store and present data in a different way. Let's look at this in more detail.

Working with block storage and storage area network
(SAN)

Block storage divides data into blocks and stores them as chunks of data. Each block has a
unique ID that allows the system to place data wherever it is accessible faster. As blocks
don't store any metadata about files, so a server-based operating system manages and uses
these blocks in the hard drive. Whenever the system requests data, the storage system
collects the blocks and gives the result back to the user. Block storage deployed in a storage
area network (SAN) stores data efficiently and reliably. It works well where a large amount
of data needs to be stored and accessed frequently—for example, database deployment,
email servers, application deployment, and virtual machines.

[207]

Performance Considerations Chapter 7

SAN storage is sophisticated and supports complex, mission-critical applications. They are a
high-performance storage system that communicates block-level data between the server
and storage; however, SAN is significantly costly and should be used for large-

scale, enterprise applications where low latency is required.

To configure your block-based storage, you have to choose between a solid-state

drive (SSD) and a hard-disk drive (HDD). HDDs are the legacy data storage for servers
and enterprise storage arrays. HDDs are cheaper, but they are slower and need more power
and cooling. SSDs use semiconductor chips and are faster than HDDs. They are much more
costly; however, as technology evolves, SSDs will become more affordable and gain
popularity because of their efficiency and lower power and cooling requirements.

Working with file storage and network area storage
(NAS)

File storage has been around for a long time and is widely used. In file storage, data is
stored as a single piece of information and is organized inside folders. When you need to
access the data, you provide the file path and get the data files; however, a file path can
grow complicated as files become nested under multiple folder hierarchies. Each record has
limited metadata, including the filename, time of creation, and updated timestamps. You
can take the analogy of a book library where you store books in drawers and keep a note of
the location where each book is stored.

An NAS is a file storage system that is attached to the network and displays to the user
where they can store and access their files. NAS storage also manage user privilege, file
locking, and other security mechanisms that protect the data. NAS storage works well as
file-sharing systems and local archives. When it comes to storing billions of files, NAS
might not be the right solution, given that it has limited metadata information and a
complex folder hierarchy. To store billions of files, you need to use object storage. Let's
learn more about object storage and its benefits over file storage.

Working with object storage and the cloud data storage

Object storage bundles the data itself with a unique identifier and metadata that is
customizable. Object storage uses a flat address space compared to the hierarchical
addresses in file storage or addresses distributed over a chunk of blocks in block storage.
Flat address space makes it easier to locate data and retrieve it faster regardless of the data
storage's location. Object storage also helps the user to achieve an unlimited scalability of
storage.

[208]

Performance Considerations Chapter 7

Object storage metadata can have lots of details, and users can customize it to add more
details compared to the addition of tagging in file storage. Data can be accessed by a simple
API call and is very cost-effective to store. Object storage performs best for high-volume,
unstructured data; however, objects cannot be modified but only replaced, which makes it
not a good use case for a database.

Cloud data storage, such as Amazon Simple Storage Service (S3), provides an unlimited
scalable object data store with high availability and durability. You can access data with a
unique global identifier and metadata file prefix. The following diagram shows all three
storage systems in a nutshell:

&

Object storage

LI e e
8 9 A
LR

! ! Block storage

File storage

Data storage systems

As shown in the preceding diagram, block storage stores data in blocks. You should use
block storage when your application needs very low latency and data storage access by a
single instance. File storage stores data in a hierarchical folder structure and has little
latency overhead. You should use the file storage system when a separate room needs to
access multiple instances. Object storage stores data in buckets with a unique identifier for
the object. It provides access over the web to reduce latency and increase throughput. You
should use object storage to store and access static content, such as images and videos. You
can store a high volume of data in the object store and perform big data processing and
analysis.

Direct-attached storage (DAS) is another kind of data storage where the storage is directly
attached to the host server; however, it has a very limited scalability and storage capacity.
The magnetic tape drive is another popular storage system for backing up and archiving.
Because of its low cost and high availability, magnetic tape drives are used for archival
purposes, but have high latency, which makes them unsuitable for use in direct
applications.

[209]

Performance Considerations Chapter 7

Oftentimes, you will need to increase throughput and data protection for a mission-critical
application, such as a transactional database, where data is stored in SAN storage; however,
an individual SAN storage may have limited volume and throughput. You can overcome
this situation using a redundant array of independent disks (RAID) configuration. A
RAID is a way of storing data on multiple disks. It protects data loss from a drive failure
and increases disk throughput by striping various disks together.

RAID uses the technique of disk mirroring or disk striping, but for the operating system,
RAID is a single logical disk. RAID has a different level to distinguish the configuration
type—for example, RAID 0 uses disk striping and provides the best performance, but has
no fault tolerance, whereas RAID 1 is known as disk mirroring. It duplicates the data
storage and provides no performance improvement for write operations but doubles the
read performance. You can combine both RAID 0 and RAID 1 to form RAID 10 and achieve
the best of both with high throughput and fault tolerance.

Select the storage solution that matches your access pattern to maximize performance.
There are various options available with a cloud offering to choose for your block, file, and
object storage method—for example, the public cloud AWS provides Amazon Elastic Block
Store (EBS) as a SAN type of storage in the cloud and Amazon Elastic File Storage (EFS) as
an NAS type of storage in the cloud. Amazon S3 is very popular for object storage.
Different storage solutions provide you the flexibility to choose your storage methods
based on the access pattern, whether you are working in an on-premise environment or
wanting to go cloud native.

Now that you have learned about the compute and storage choices that are necessary to
achieve optimal performance, let's look at the next critical component of the application
development, which is the database. Choosing the right database for the right need will
help you to maximize your application performance and lower overall application latency.
There are different types of database available, and choosing the correct database is critical.

Choosing the database

Oftentimes, you will want to standardize a common platform and use a database for ease of
management; however, you should consider using a different type of database solution as
per your data requirement. Selecting the incorrect database solution can impact system
latency and performance. The choice of database can vary based on your application's
requirements for availability, scalability, data structure, throughput, and durability. There
are multiple factors to consider when choosing to use a database—for example, the access
pattern can significantly impact the selection of database technology. You should optimize
your database based on the access pattern.

[210]

Performance Considerations Chapter 7

Databases generally have a configuration option for workload optimization. You should
consider the configuration for memory, cache, storage optimization, and so on. You should
also explore the operational aspect of database technologies in terms of scalability, backup,
recovery, and maintenance. Let's look at the different database technologies that can be
used to fulfill the database requirements of applications.

Online transactional processing (OLTP)

Most of the traditional relational databases are considered OLTP. The transactional
database is the oldest and most popular method of storing and handling application data.
Some examples of relational OLTP databases are Oracle, Microsoft SQL Server, MySQL,
PostgreSQL, Amazon RDS, as well as others. The data access pattern for OLTP involves
fetching a small dataset by looking up their ID. A database transaction means that either all
related updates of the database table completed, or none of them did.

The relational model allows the processing of complex business transactions in an
application, such as banking, trading, and e-commerce. It will enable you to aggregate data
and create complex queries using multiple joins across tables. While optimizing your
relational database, you need to consider including the following optimizations:

e Database server that includes computing, memory, storage, and network

¢ Operating system-level settings, such as a RAID configuration of the storage
volume, volume management, and block size

¢ Database engine configuration and partition as required
¢ Database-related options, such as schema, index, and view

Scaling can be tricky for the relational database as it can scale vertically and hit the upper
limit of system capacity. For horizontal scaling, you have to read the replica for read scaling
and partition for write scaling. In the previous chapter, you learned how to scale a relational
database in the section titled Database handling in the application architecture.

OLTP databases are suitable for large and complex transactional applications; however,
they don't scale well where a massive amount of data needs to aggregate and be queried.
Also, with the internet boom, there is a lot of unstructured data that is coming from
everywhere, and relational databases are not able to handle unstructured data efficiently
out of the box. In this case, the NoSQL database comes to the rescue. Let's learn more about
how to handle a nonrelational database.

[211]

Performance Considerations Chapter 7

Nonrelational databases (NoSQL)

There is a lot of unstructured and semistructured data produced by application such as
social media programs, the IoT (internet of things), and logs, where you have a very
dynamic schema. These data types may have different schemas from each set of records.
Storing this data in a relational database could be a very tedious task. Everything has to be
filed into fixed schema, which can either cause lots of null values or data loss. The
nonrelational or NoSQL database provides you with the flexibility to store such data
without worrying about fixed schema. Each record can have a variable number of columns
and can be stored in the same table.

NoSQL databases can store a large amount of data and provide low-access latency. They are
easy to scale by adding more nodes when required and can support horizontal scaling out
of the box. They can be an excellent choice to store user session data and can make your
application stateless to achieve horizontal scaling without compromising user experience.
You can develop a distributed application on top of the NoSQL database, which provides
good latency and scaling, but query joining has to be handled at the application layer.
NoSQL databases don't support complex queries such as joining tables and entities.

There are various choices available for the NoSQL database—for example, Cassandra,
HBase, and MongoDB, which you can install in a cluster of virtual machines; however, the
public cloud-like AWS provides a managed NoSQL database called Amazon Dynamo
DB, which provides high throughput and sub-millisecond latency with unlimited scaling.

You can use OLTP for a relational database, but it has limited storage capacity. It doesn't
respond well to queries for large amounts of data, and those that perform aggregations as
required for data warehouses. Data warehousing needs are more analytical than
transactional. The OLAP database satisfies the gap of the OLTP database to query a large
dataset. Let's learn more about the OLAP database.

Online analytical processing (OLAP)

OLTP and NoSQL databases are useful for application deployment but have limited
capabilities for large-scale analysis. A query for a large volume of structured data for
analytics purposes is better served by a data warehouse platform designed for faster access
to structured data. Modern data warehouse technologies adopt the columnar format and
use massive parallel processing (MPP), which helps to fetch and analyze data faster.

[212]

Performance Considerations Chapter 7

The columnar format avoids the need to scan the entire table when you need to aggregate
only one column for data—for example, if you want to determine the sales of your
inventory in a given month. There may be hundreds of columns in the order table, but you
need to aggregate data from the purchase column only. With a columnar format, you

will only scan the purchase column, which reduces the amount of data scanned compared
to the row format, and thereby increases the query performance.

With massive parallel processing, you store data in a distributed manner between child
nodes and submit a query to the leader nodes. Based on your partition key, the leader node
will distribute queries to the child nodes, where each node picks up part of a query to
perform parallel processing. The leader node then collects the subquery result from each
child node and returns your aggregated result. This parallel processing helps you to
execute the query faster and process a large amount of data quicker.

You can use this kind of processing by installing software such as IBM Netezza or
Microsoft SQL server on a virtual machine, or you can go for a more cloud-native solution,
such as Snowflake. A public cloud, such as Amazon Web Service, provides the petabyte-
scale data warehousing solution Amazon Redshift, which uses the columnar format and
massively parallel processing. You will learn more about data processing and analytics in
Chapter 13, Data Engineering and Machine Learning.

You need to store and search a large amount of data, especially when you want to find a
specific error in your logs or build a document search engine. For this kind of capability,
your application needs to create a data search. Let's learn more about the data search.

Building a data search

Oftentimes, you will need to search a large volume of data to solve issues quickly or get
business insights. The ability to search your application data will help you to access
detailed information and analyze it from different views. To search for data with low
latency and high throughput, you need to have search engines as your technology choice.

Elasticsearch is one of the most popular search engine platforms and is built on top of the
Apache Lucene library. Apache Lucene is a free and open source software library that is the
foundation of many popular search engines. The ELK (short for Elasticsearch, LogStash,
and Kibaba) stack is easy to use for the automatic discovery of large-scale data and to index
it for searching. Because of its property, there are multiple tools that have been developed
around Elasticsearch for visualization and analysis—for example, LogStash works

with Elasticsearch to collect, transform, and analyze a large amount of an application’s log
data. Kibana has an in-built connector with Elasticsearch that provides a simple solution
for creating dashboards and analysis on indexed data.

[213]

Performance Considerations Chapter 7

Elasticsearch can be deployed in virtual machines and scale horizontally to increase
capacity by adding new nodes to the cluster. The public cloud AWS provides the managed
service Amazon Elasticsearch Service (Amazon ES), which makes it cost effective and
simple to scale and manage the Elasticsearch cluster in the cloud.

In this section, you learned about the various database technologies and what they are used
for. Your applications can use a combination of all database technologies in order for their
different components to achieve optimal performance. For complex transactions, you need
to use a relation OLTP database, and to store and process unstructured or semistructured
data, you need to use a nonrelational NoSQL database. You should use the NoSQL
database where very low latency is required over multiple geographical regions and where
you need to handle complex queries at the application layer, such as in a gaming
application. If you need to perform any large-scale analytics on structured data, use a data
warehouse OLAP database.

Let's look at another critical component of your architecture, which is networking.
Networking is the backbone of the entire application and establishes communication
between the servers and the outside world. Let's learn about networking as regards
application performance.

Making the networking choice

In this era of fast internet availability in almost every corner of the world, it is expected that
applications will have a global user reach. Any delay in the system's response time depends
upon the request load and the distance of the end user from the server. If the system is not
able to respond to user requests in a timely manner, it can have a ripple effect by
continuing to engage all system resources and pile up a huge request backlog, which will
degrade overall system performance.

To reduce latency, you should simulate the user's location and environment to identify any
gap. As per your findings, you should design the server's physical location and caching
mechanism to reduce network latency; however, the network solution choice for an
application depends upon the networking speed, throughput, and network latency
requirements. For an application to handle a global user base, it needs to have fast
connectivity with its customers where location plays an important role. Edge locations
provided by the CDN help to localize the heavy content and reduce overall latency.

[214]

Performance Considerations Chapter 7

In chapter ¢, Solution Architecture Design Patterns, you learned how to use a CDN to put
data near your user's location in the section titled cache-based architecture. There are various
CDN solutions available with an extensive network of edge locations. You can use a CDN if
your application is static-content-heavy, where you need to deliver large image and video
content to your end user. Some of the more popular CDN solutions are Akamai, Cloudflare,
and Amazon CloudFront (provided by the AWS cloud). Let's look at some DNS routing
strategies to achieve low latency if your application is deployed globally.

Defining a DNS routing strategy

In order to have global reach, you may be deploying your application in multiple
geographical regions. When it comes to user request routing, you want to route their
requests to the nearest and fastest available server for a quick response from your
application. The DNS router provides the mapping between the domain names to the IP
addresses and makes sure that the requests are served by the right server when the user
types in the domain name—for example, when you type amazon. com in your browser to
do some shopping, your request is always routed to the Amazon application server by the
DNS service.

The public cloud-like AWS provides a DNS service called Amazon Route 53, where you
can define a different kind of routing policy as per your application's need. Amazon Route
53 provides DNS services to simplify domain management and zone APEX support. The
following are the most used routing policies:

e Simple routing policy: As the name suggests, this is the most straightforward
routing policy and doesn't involve any complications. It is useful to route traffic
to a single resource—for example, a web server that serves content for a
particular website.

e Failover routing policy: This routing policy requires you to achieve high
availability by configuring active-passive failover. If your application goes down
in one region, then all the traffic can be routed to another region automatically.

¢ Geolocation routing policy: If the user belongs to a particular location then you
can use a geolocation policy. A geolocation routing policy helps to route traffic to
a specific region.

e Geoproximity routing policy: This is like a geolocation policy, but you have the
option to shift traffic to other nearby locations when needed.

[215]

Performance Considerations Chapter 7

e Latency routing policy: If your application is running in multiple regions, you
can use a latency policy to serve traffic from the region where the lowest latency
can be achieved.

* Weighted routing policy: A weighted routing policy is used for A/B testing,
where you want to send a certain amount of traffic to one region and increase
this traffic as your trial proves more and more successful.

Additionally, Amazon Route 53 can detect anomalies in the source and volume of DNS
queries and prioritize requests from users that are known to be reliable. It also protects your
application from a DDoS attack. Once traffic passes through the DNS server, in most cases,
the next stop will be a load balancer, which will distribute traffic among a cluster of servers.
Let's learn about some more details regarding the load balancer.

Implementing a load balancer

The load balancer distributes network traffic across the servers to improve use concurrency,
reliability, and application latency. The load balancer can be physical or virtual. You need to
choose a load balancer based on your application's need. Commonly, two types of load
balancer can be utilized by the application:

1. Layer 4 or network load balancer: Layer 4 load balancing routes packets based
on information in the packet header—for example, source/destination IP
addresses and ports. Layer 4 load balancing does not inspect the contents of a
packet, which makes it less compute intensive and therefore faster. A network
load balancer can handle millions of requests per second.

2. Layer 7 or application load balancer: Layer 7 load balancing inspects, and routes
packets based on the full contents of the packet. Layer 7 is used in conjunction
with HTTP requests. The materials that inform routing decisions are factors such
as HTTP headers, URI path, and content type. This allows for more robust
routing rules but requires more compute time to route packets. The application
load balancer can route the request to containers in your cluster based on their
distinctive port number.

[216]

Performance Considerations Chapter 7

Depending on the environment, you can choose hardware-based load balancers, such as an
F5 load balancer or a Cisco load balancer. You can also choose a software-based load
balancer, such as Nginx. The public cloud provider AWS facilitates a managed virtual load
balancer called Amazon Elastic load balancer (ELB). ELB can be applied at layer 7 as an
application load balancer and tier 4 as a network load balancer.

A load balancer is a great way of securing your application, making it highly available by
sending a request to healthy instances. It works together with autoscaling to add or remove
instances as required. Let's look at autoscaling and learn how it helps to improve overall
performance and the high availability of your application.

Applying autoscaling

You learned about autoscaling in chapter 4, Principles of Solution Architecture Design. You
learned about predictive autoscaling and reactive autoscaling in the section titled Design for
scale. The concept of autoscaling became popular with the agility provided by the cloud
computing platform. Cloud infrastructure allows you to easily scale up or scale down your
server fleet based on user or resource demand.

With a public cloud platform such as AWS, you can apply autoscaling at every layer of
your architecture. In the presentation layer, you can scale the web server fleet based on
your requests, and at the application layer based on the server's memory and CPU
utilization. You can also perform scheduled scaling if you know the traffic pattern when the
server load is going to increase. At the database level, autoscaling is available for relational
databases such as Amazon Aurora Serverless and the Microsoft Azure SQL database. A
NoSQL database such as Amazon DynamoDB can be autoscaled based on throughput
capacity.

[217]

Performance Considerations Chapter 7

When autoscaling, you need to define the number of desired server instances. You need to
define the maximum and minimum server capacity as per your application's scaling needs.
The following screenshot illustrates the autoscaling configuration from AWS Cloud:

Edit details - ASG-SA X

Launch Instances Using (i Launch Template

© Launch Configuration

Launch Configuration (i [webserverCopy -]
Desired Capacity (i 3
Min (i 2
Max (i 5
Availability Zone(s) (i eu-west-1a X | | eu-west-1b %
Subnet(s) (i subnet-Obe5c2b238624205e(10.0.0.0/24) | x

PublicSubnetA-saurabh | eu-west-1a

subnet-0a499ab52ff71bacd(10.0.1.0/24) | x
PublicSubnetB-saurabh | eu-west-1b

Classic Load Balancers (i testec2-SAelb-10E7VO7XZAQVB X
Target Groups (j
Health Check Type (i EC2 M
Health Check Grace Period (j 300

Instance Protection (i

el =

Autoscaling configuration

In the preceding autoscaling configuration setting, if three web server instances are
running, it can scale up to 5 instances if the CPU utilization of servers goes above 50% and
scale down to 2 instances if the CPU utilization goes below 20%. In the case of an unhealthy
instance, the count will go below the desired capacity in a standard scenario. In such a case,
the load balancer will monitor the instance health and will use autoscaling to provision new
instances. The load balancer monitors instance health and will trigger autoscaling to
provision new instances as required.

[218]

Performance Considerations Chapter 7

Autoscaling is a good feature to have, but make sure you set up your desired
configurations to limit the cost of a change in CPU usage. In the case of unforeseen traffic
due to events such as a distributed denial of service (DDoS) attack, autoscaling can increase
cost significantly. You should plan to protect your system for such kinds of events. You will
learn more about this in Chapter 8, Security Considerations.

At the instance level, you need high-performance computing (HPC) to perform
manufacturing simulation or gnome analysis. HPC performs well when you put all
instances in the same network close to each other for low latency of data transfer between
the node of a cluster. Between your data centers or cloud, you can choose to use your
private network, which can provide an additional performance benefit. For example, to
connect your data center to AWS cloud, you can use Amazon Direct Connect. Direct
Connects provides 10 Gbps private fiber optics lines, where Network latency is much lower
than sending data over the internet.

In this section, you have learned about various networking components that can help to
improve application performance. You can optimize your application network traffic
according to your user location and application demand. Performance monitoring is an
essential part of your application, and you should do proactive monitoring to improve
customer experience. Let's learn more about performance monitoring

Managing performance monitoring

Performance monitoring is important when you are trying to proactively understand any
performance issue and reduce end user impact. You should define your performance
baseline and raise the alarm to the team in the case of a threshold breach—for example, an
application's mobile app open time should not be more than three seconds. Your alarm
should be able to trigger an automated action to handle poorly performing
components—for example, adding more nodes in a web application cluster to reduce the
request load.

[219]

Performance Considerations Chapter 7

There are multiple monitoring tools available to measure application performance and
overall infrastructure. You can use a third-party tool, such as Splunk, or AWS provided
Amazon CloudWatch to monitor any application. Monitoring solutions can be categorized
into active monitoring and passive monitoring solutions:

e With active monitoring, you need to simulate user activity and identify any
performance gap upfront. Application data and workload situations are always
changing, which requires continuous proactive monitoring. Active monitoring
works alongside passive monitoring as you run the known possible scenarios to
replicate user experience. You should run active monitoring across all dev, test,
and prod environments to catch any issue before it reaches the user.

e Passive monitoring tries to identify an unknown pattern in real time. For a web-
based application, passive monitoring needs to collect important metrics from
the browser that can cause performance issues. You can gather metrics from
users regarding their geolocation, browser types, and device types to understand
user experience and the geographic performance of your application. Monitoring
is all about data, and it includes the ingestion, processing, and visualization of
lots of data.

You will continue to learn about the various monitoring methods and
tools in upcoming chapters and dive deep into monitoring and alerts in
Chapter 9, Architectural Reliability Considerations.

Performance always comes with a cost, and, as a solution architect, you need to think about
the trade-offs to take the right approach—for example, an organization's internal
applications, such as the timesheet and HR programs, may not need very high performance
compared to external products, such as e-commerce applications. An application that deals
with trading (for example) needs very high performance, which requires more investment.
As per your application's needs, you can balance between durability, consistency, cost, and
performance

Tracking and improving performance are complex tasks, where you need to collect lots of
data and analyze patterns. An access pattern helps you to make the right choice for
performance optimization. Load testing is one of the methods that allows you to tweak
your application configuration by simulating user load and provides you with data to make
the right decisions for your application architecture. Applying continuous active
monitoring in combination with passive monitoring helps you to maintain consistent
performance for your application.

[220]

Performance Considerations Chapter 7

Summary

In this chapter, you learned about the various architecture design principles that impact the
performance of applications. You learned about latency and throughput at different layers
of architecture and how they relate to each other. For high-performant applications, you
need to have low latency and high throughput at every layer of the architecture.
Concurrency helps to process a large number of requests. You also learned the difference
between parallelism and concurrency and got an insight into how caching can help to
improve overall application performance.

Then you learned about how to choose your technology and their working models, which
can help to achieve your desired application performance. While looking at the compute
option, you learned about the various processor types and their differences to help you
make the right choice when selecting server instances. You learned about containers and
how they can help you to utilize the resources efficiently and at the same time help to
improve performance. You also learned how Docker and Kubernetes work well with each
other and fit into your architecture.

In the section on choosing storage, you learned about different kinds of storage, such as
block, file, and object storage and their differences. You also learned about the available
storage choices in on-premise and cloud environments. Storage choice depends on multiple
factors. You can enhance disk storage durability and throughput by putting multiple
volumes in a RAID configuration.

In the section on choosing a database, you learned about the various database types,
including relational, nonrelational, data warehouse, and data search. While looking at
choosing your network, you learned about the various request routing strategies that can
help you to improve network latency for your globally distributed user. You learned how
load balancers and autoscaling can help you to manage a large number of user requests
without compromising application performance.

In the next chapter, you will learn about how to secure your application by applying
authentication and authorization. This will ensure that your data at rest and in transit and
your application is protected from various kinds of threats and attacks. You will also learn
about compliance requirements and how to satisfy them when designing your application.
You will learn the details about security audits, alerts, monitoring, and automation.

[221]

Security Considerations

Security is always at the center of architecture design. Many large enterprises suffer
financial loss due to security breaches when their customer data gets leaked. Organizations
not only lose customer trust but also lose the entire business. There are many industry-
standard compliances and regulations out there to make sure your application is secure and
protects customer-sensitive data.

Security isn't just about getting through the outer boundary of your infrastructure. It's also
about ensuring that your environments and their components are secured from each other.
In the previous chapter, you learned about various performance-improvement aspects and
technology choices for your architecture. In this chapter, you will gain an understanding of
best practices to secure your application and make sure it is compliant with industry-
standard regulations.

For example, in the server, you can set up a firewall that allows you to determine which
ports on your instances can send and receive traffic, and where that traffic can come from.
You can use firewall protection to reduce the probability that a security threat on one
instance will not spread to other instances in your environment. Similar precautions are
required for other services. Specific ways to implement security best practices are discussed
throughout this chapter.

You will learn the following best security practices in this chapter:

¢ Designing principles for architectural security

e Selecting technology for architectural security

e Security and compliance certifications

¢ The cloud's shared security responsibility model

You will learn various design principles applicable to secure your solution architecture.
Security needs to be applied at every layer and in every component of the architecture. You
will get an understanding of the right technology to select to ensure your architecture is
secure at every layer.

Security Considerations Chapter 8

Designing principles for architectural
security

Security is all about the ability to protect your system and information while delivering
business value for your customers. You need to conduct an in-depth risk assessment and
plan a mitigation strategy for the continuous operation of your business. The following
sections talk about the standard design principles that help you to strengthen your
architectural security.

Implementing authentication and authorization
control

The purpose of authentication is to determine if a user can access the system with the
provided credentials of user ID and password. While authorization determines what a user
can do once they are inside the system, you should create a centralized system to manage
your user's authentication and authorization.

This centralized user management system helps you to keep track of the user's activity so
you can deactivate them if they are no longer a part of the system. You can define standard
rules to onboard a new user and remove access for inactive users. The centralized system
eliminates reliance on long-term credentials and allows you to configure other security
methods such as password rotation and strength.

For authorization, you should start with the principle of least privilege—it means users
should not have any access to begin with, and then begin assigning them only the required
access according to their job role. Creating an access group according to job role helps to
manage the authorization policy in one place and apply authorization restrictions across a
large number of users. For example, you can restrict the development team to have full
access to the dev environment and read-only access to the production environment. If any
new developer joins, they should be added to this dev group, where all authorization
policies are managed centrally.

Enabling single sign-on with a centralized users' repository helps to reduce the hassle of
remembering multiple passwords for your user base and eliminates any risk of password
leakage. Large organizations use centralized user management tools such as Active
Directory (AD) for employee authentication and authorization, to provide them access to
internal enterprise applications such as the HR system, the expense system, the timesheet
application, and so on.

[223]

Security Considerations Chapter 8

In a customer-facing application, such as e-commerce and social media websites, you can
use an OpenlID authentication system to maintain a centralized system. You will learn
about large-scale user management tools in more detail in the OAuth section of this chapter.

Applying security everywhere

Often, organizations have a main focus of ensuring the physical safety of their data center
and protecting the outer networking layer from any attack. Instead of just focusing on a
single outer layer, ensure that security is applied at every layer of the application.

Apply the defense-in-depth (DiD) approach, and put security at various layers of the
application; for example, a web application needs to be secured from an external internet
traffic attack by protecting the Enhanced Data Rates for Global Evolution (EDGE)
network and Domain Name System (DNS) routing. Apply security at the load balancer
and network layers to block any malicious traffic.

Secure every instance of your application by allowing only required incoming and
outgoing traffic in the web application and database layer. Protect operating systems with
antivirus software to safeguard against any malware attack. Apply both proactive and
reactive measures of protection by putting intrusion detection and intrusion prevention
systems in front of your traffic flow and Web Application Firewall (WAF) to protect your
application from various kinds of attacks. You will learn more details about the various
security tools to use in the Selecting technology for architectural security section of this chapter.

Reducing blast radius

While applying security measures at every layer, you should always keep your system
isolated in a small pocket to reduce the blast radius. If attackers get access to one part of the
system, you should be able to limit a security breach to the smallest possible area of the
application. For example, in a web application, keep your load balancer in a separate
network from other layers of the architecture, as that will be internet-facing. Further, apply
network separation at the web, application, and database layers. In any case, if an attack
happens in one layer, it will not expand to other layers of the architecture.

The same rules are applied to your authorization system to give the least privilege to users
and provide only the minimum required access. Make sure to implement multi-factor
authentication (MFA) so that even if there's a breach in user access, it always needs a
second level of authentication to get into the system.

[224]

Security Considerations Chapter 8

Provide minimal access to ensure that you are not exposing the entire system and provide
temporary credentials to make sure access is not open for a long time. Take particular
caution when providing programmatic access by putting a secure token in place, with
frequent key rotation.

Monitoring and auditing everything all the time

Put the logging mechanism for every activity in your system and conduct a regular audit.
Audit capabilities are often also required from various industry-compliance regulations.
Collect logs from every component, including all transactions and each API call, to put
centralized monitoring in place. It is a good practice to add a level of security and access
limitation for a centralized logging account so that no one is able to tamper with it.

Take a proactive approach and have the alert capability to take care of any incident before
the user gets impacted. Alert capabilities with centralized monitoring help you to take
quick action and mitigate any incident. Monitor all user activity and application accounts to
limit the security breach.

Automating everything

Automation is an essential way to apply quick mitigation for any security-rule violation.
You can use automation to revert changes against desired configurations and alert the
security team—for example, if someone added admin users in your system and an open
firewall to an unauthorized port or IP address. Applying automation in security systems
has become popular with the concept of DevSecOps. DevSecOps is about adding security at
every part of application development and operation. You will learn more about
DevSecOps in chapter 12, DevOps and Solution Architecture Framework.

Create secure architectures and implement security control that is defined and managed
as code. You can version-control your security as a code template, and analyze changes as
required. Automated security mechanisms as software code help you scale security
operations more rapidly, in a cost-effective way.

[225]

Security Considerations Chapter 8

Protecting data

Data is at the center of your architecture, and it is essential to secure and protect it. Most of
the compliance and regulation in place are there to protect customer data and identity.
Most of the time, any attack has the intention of stealing the user's data. You should
categorize your data as per its sensitivity level and protect it accordingly. For example,
customer credit card information should be the most sensitive data and needs to be
handled with the utmost care. However, a customer's first name may not be that sensitive
compared to their password.

Create mechanisms and tools that should minimize the need for direct access to data.
Avoid manual processing of data by applying tool-based automation that

eliminates human error, especially when handling sensitive data. Apply access restrictions
to the data wherever possible to reduce the risk of data loss or data modification.

Once you categorize data sensitivity, you can use the appropriate encryption, tokenization,
and access control to protect the data. Data needs to be protected not only at rest but when
transmitting over the network as well. You will learn about various mechanisms to protect
data in the Data security section of this chapter.

Preparing a response

Keep yourself ready for any security events. Create an incident management process as per
your organizational policy requirements. Incident management can differ from one
organization to another and from one application to another. For example, if your
application is handling Personal Identifiable Information (PII) of your customers, you
need a tighter security measure in your incident response. However, if the application is
handling small amounts of sensitive data, such as an inventory management application,
then it will have a different approach.

Make sure to simulate the incident response to see how your security team is recovering
from the situation. Your team should use automation tools for speed of detection,
investigation, and response to any security event. You need to set up the alert, monitor, and
audit mechanisms to do Root Cause Analysis (RCA) to prevent such events occurring
again.

In this section, you learned about the general security principles to apply in your
architecture for application security. In the next section, you will learn how to apply these
principles using different tools and techniques.

[226]

Security Considerations Chapter 8

Selecting technology for architectural
security

The previous section was more focused on the general rules of application security to
consider while creating an architecture design, but the question is: How do we apply these
rules to make the application secure during implementation? There are various tools and
technologies available for each layer of your application to make it secure.

In this section, you will learn in detail about the multiple technology choices to apply in the
area of user management and protection of the web, infrastructure, and data of your
application. Let's start with the first area, user identity and access management.

User identity and access management

User identity and access management are vital parts of information security. You need to
make sure only authenticated and authorized users are able to access your system resources
in a defined manner. User management could be a daunting task as your organization and
product adoption grows. User access management should differentiate and manage

access to an organization's employees, vendors, and customers.

Enterprise or corporate users could be the organization's employees, contractors, or
vendors. Those are specialist users who have a special privilege to develop, test, and deploy
the application. In addition to that, they require access to another corporate system to do
their daily job—for example, an Enterprise Resource System (ERP), a payroll system, an
HR system, a timesheet application, and so on. As your organization grows, the number of
users can grow from hundreds to thousands.

The end users are the customers who use your applications and have minimal access to
explore and utilize the desired feature of the application—for example, players of a gaming
application, users of social media applications, or customers of an e-commerce website. The
count of these users could be from hundreds to thousands to millions (or even more) as the
popularity of your product or application grows. The other factor is that user count can
grow exponentially, which can add challenges. You need to take special care of security
when exposing the application to external-facing internet traffic to protect it from various
threats.

[227]

Security Considerations Chapter 8

Let's talk about corporate user management first. You need to have a centralized repository
where you can enforce security policies such as strong password creation, password
rotation, and multi-factor authentication (MFA) for better user management. The use of
MFA provides another means of validating someone's identity, if a password may have
already compromised. Popular MFA providers include Google Authenticator, Gemalto,
YubiKey, RSA SecurelD, Duo, and Microsoft Authenticator.

From a user-access prospective, role-based authentication (RBA) simplifies user
management; you can create user groups as per the user's role and assign an appropriate
access policy. As illustrated in the following diagram, you have three groups—admin,
developer, and tester—with the corresponding access policy applied to the individual
group. Here, admin can access any system, including production, while developer access is
limited to the dev environment, and so the tester can only access the test environment:

h 4

Admin A

h 4

Admin Group Admin B

Developers B

h 4

Developers A

h 4

Developers Group

Account

QA Group QA A

QAB

h 4
¥

User group organization

As shown in the preceding diagram, when any new user joins the team, they get assigned
to the appropriate group as per their role. In this way, each user has a defined set of
standard access. The user group also helps to update access in case a new development
environment gets introduced, and all developers need to have access to that.

Single Sign-On (SSO) is the standard process to reduce any security lapses and help to
automate the system. SSO provides users with a login to the different corporate systems,
with a single user ID and password. Federated Identity Management (FIM) allows users to
access the system without a password with a pre-authenticated mechanism. Let's look at
some more details.

[228]

Security Considerations Chapter 8

FIM and SSO

FIM provides a way to connect the identity management system when user information is
stored in the third-party identity provider (IdP). With FIM, the user only provides
authentication information to the IdP, which in turn already has a trusted relationship with
the service.

As illustrated in the following diagram, when a user logs in to access a service, the service
provider (SP) gets credentials from the IdP, rather than getting them directly from the
user:

User Access Services Service Provider

e

. R
Authenticate

< Trust Relationship

Identity Provider

FIM

SSO allows the use of a single sign-on, with which the user can access multiple services.
Here, an SP could target an environment where you want to log in—for example, a
Customer Relationship Management (CRM) application or your cloud application. An IdP
could be a corporate AD. Federation allows something similar to an SSO without a
password, as the federation server knows users to access information.

There are various techniques available to implement FIM and SSO. Let's look at some of the
popular Identify and Access Management (IAM) choices available.

Kerberos

Kerberos is an authentication protocol that allows two systems to identify each other in a
secure way and helps to implement SSO. It works in the client-server model and uses a
ticket system for user identity. Kerberos has the Key Distribution Center (KDC), which
facilitates authentication between two systems. The KDC consists of two logical
parts—the Authentication Server (AS) and the Ticket-Granting Server (TGS).

[229]

Security Considerations Chapter 8

Kerberos stores and maintains the secret keys of each client and server in the datastore. It
establishes a secure session between two systems during their communication and
identifies them with the stored secret key. The following diagram illustrates the
architecture of Kerberos authentication:

1. Ticket request access ———»
«— 7 Response from a Ticket Granting ticket

i —
3_Service ticket request with Ticket Granting ticket ———> P
"_4.RESDDHSE Provided D}’ Service ticket

Client T

5.5emvice request with Service ticket

6.Response from service provider

Kerberos authentication

As shown in the preceding diagram, when you want to access a service, the following steps
are involved:

1.

The client sends an access ticket request to the AS as a plaintext request. This
request contains the client ID, TGS ID, IP address, and authentication time.

The AS checks if your information is available in the KDC database. Once AS has
found your information, it establishes a session between the client request and
the TGS. The AS then replies to the client with the Ticket-Granting Ticket (TGT)
and the TGS session key.

Now, the TGS session key asks for a password, and, given the correct password,
a client can decrypt the TGS session key. However, it cannot decrypt the TGT
since the TGS secret key is not available.

Now, the client sends the current TGT to the TGS with the authenticator. The
TGS contains the session key along with the client ID and Service Principal
Name (SPN) of the resource the client wants to access.

[230]

Security Considerations Chapter 8

5. Now, the TGS again checks if the requested service address exists in the KDC
database. If yes, the TSG will then encrypt the TGT and send a valid session key
for the service to the client.

6. The client forwards the session key to the service to prove that the user has
access, and the service grants access.

While Kerberos is an open source protocol, large enterprises like to use more managed
software with robust support, such as AD. Let's look at the working mechanism of one of
the most popular user management tools, Microsoft AD, which is based on the Lightweight
Directory Access Protocol (LDAP).

AD

AD is an identity service developed by Microsoft for users and machines. AD has a domain
controller, also known as Active Directory Domain Service (AD DS), which stores the
user's and the system's information, their access credentials, and their identity. The
following diagram illustrates a simple flow of the necessary authentication process:

Active Directory

1. A user enters the access credentials 4N
>

-
£

2. AD authenticates user credentials
and returns an auth token

User device

v

3. Access token provided
to the user to maintain session

Service

AD authentication flow

As shown in the preceding diagram, the user login is managed by AD or any resource on
the domain networks. Users first send the request to the domain controller with their
credentials and communicate with the Active Directory Authentication Library (ADAL).
The ADAL verifies the user credentials and sends back an access token with a continuous
session for the requested service.

[231]

Security Considerations Chapter 8

LDAP is the standard protocol that handles the tree-like hierarchical structure of
information stored in directories. Active Directory Lightweight Directory Services (AD
LDS) provides an LDAP interface to the directory of users and systems. For file encryption
and network traffic encryption, Active Directory Certificate Services (AD CS) provides the
key infrastructure functionality. Active Directory Federation Service (ADFS) provides
access mechanisms for external resources such as web app logins for a large number of
users.

Amazon Web Services (AWS) Directory Service

AWS Directory Service helps to connect AWS resources in your account with an existing
on-premises user management tool such as AD. It helps to set up a new user management
directory in the AWS cloud. AWS Directory Service facilitates a secure connection to the on-
premises directory. After establishing the connection, all users can access cloud resources
and on-premises applications with their already existing credentials.

AWS AD Connector is another service that helps you to connect the existing Microsoft AD
to the AWS cloud. You don't need any specific directory synchronization tool. After setting
up an AD connection, users can utilize their existing credentials to log on to AWS
applications. Admin users can manage AWS resources, using AWS IAM.

AD Connector helps to enable MFA by integrating with your existing MFA infrastructure,
such as YubiKey, Gemalto token, RSA token, and so on. For a smaller user base (fewer than
5,000 users), AWS provides Simple AD, which is a managed directory powered by Samba 4
Active Directory Compatible Server. Simple AD has common features such as user accounts
management, user group management, SSO based on Kerberos, and user group policies.

In this section, you have learned a high-level overview of AD and managed AD services
provided by Microsoft and Amazon. The other directory services provided by major
technology companies include Google Cloud Identity, Okta, Centrify, Ping Identity, and
Oracle Identity Cloud Service (IDCS).

Security Assertion Markup Language (SAML)

Earlier in this section, under FIM and SSO, you learned about IdPs and SPs (short for
service providers). To access a service, the user gets validated from the IdP, which in-turn
has a trusted relationship with the SP. SAML is one of the mechanisms to establish a trusted
relationship between an IdP and an SP. SAML uses extensible markup language (XML)

to standardize communication between an IdP and an SP. SAML enables SSO, so users can
use a single credential to access multiple applications.

[232]

Security Considerations Chapter 8

A SAML assertion is an XML document that the IdP sends to the SP with user
authorization. The following diagram illustrates the flow of the SAML assertion:

_Credentials sent for verification .
4 =

User database Login screen User
A
5 1 7
3 Request access
Sends verification status _) User receives access
Display Login page to resources 10 resources

2
Unauthenticated request redirected to SAML 1dP with SAML request @

<

6
SAML identity provider sends SAML response Service provider
SAML identity provider

User authentication using SAML

As mentioned in the preceding diagram, the following steps are taken to implement user
authentication using SAML:

1. A user sends a request to access the service—for example, the Salesforce CRM
application— as a service provider.

2. The service provider (CRM application) sends a SAML request with the user
information to the SAML IdP.

3. The SAML IdP pops up the SSO login page, where users enter authentication
information.

4. The user access credential goes to the identity store for validation. In this case,
user identify store is an AD.

5. The user identity store sends user validation status to the SAML IdP, with whom
the identity store has a trusted relationship.

6. The SAML IdP sends a SAML assertion to the service provider (a CRM
application) with information pertaining to user verification.

7. After receiving the SAML response, the service provider allows application
access to the user.

[233]

Security Considerations Chapter 8

Sometimes, service providers can act as an identity provider as well. SAML is very popular
for establishing a relation between any identity store and service provider. All modern
identity store applications are SAML 2.0-compatible, which allows them to communicate
with each other seamlessly. SAML allows user identity to be federated and enables SSO for
enterprise users.

However, for large user bases such as social media and e-commerce websites, OAuth (short
for Open Authorization) and OpenlID are more suitable. Let's learn more about OAuth
and OpenID Connect.

OAuth and OpenID Connect (OIDC)

OAuth is an open standard authorization protocol that provides secure access to an
application. OAuth provides secure access delegation. OAuth doesn't share password data
but uses the authorization token to establish the identity between service providers and
consumers. Users of an application provide access to their information without giving login
credentials. While OAuth is mainly for authorization, many organizations have started
adding their own mechanisms for authentication. OpenID Connect defines the
authentication standard on top of OAuth authorization.

Large technology companies such as Amazon, Facebook, Google, and Twitter allow the
user to share information in their account with third-party applications. For example, you
can log in to a new photo app using your Facebook login and authorize the new app to
access only your Facebook photo information. The following diagram illustrates an OAuth
access delegation flow:

Client Authorized Server

- A t
Linkedin Go to authorization server m;ﬁ‘;ﬁ nwm
Connect with L

EMAIL
Facebook PASSWORD

User Request for access ticket
using authorizing code

Facebook wall Receive Access Token

"'”"?}2' é‘lica" Back to redirect URL A”g‘;’;'t';k:glu”r to
granting access with authorization code Facebook wall

Consent screen

User access delegation with OAuth 2.0

[234]

Security Considerations Chapter 8

As shown in the preceding diagram, the authentication flow follows these steps:

1. You want a photo app to get your profile photo from Facebook.
2. The photo app requests authorization to access Facebook profile photos.

3. The authorization server (which is your Facebook account in this case) creates
and displays a consent screen to you.

4. You provide your consent to the request for the photo app to access only your
Facebook profile photos.

5. After getting your approval, the authorization Facebook server sends an
authorization code back to the requesting photo app.

6. The photo app then requests an access token from the authorization server
(Facebook account) using the authorization code.

7. The authorization server identifies the photo app and checks the validity of the
authentication code.

8. If the access token is validated, the server issues an access token to the photo app.

9. The photo app can now access resources such as Facebook profile photos using
the access token.

OAuth 2.0, which is faster than OAuth 1.0 and more comfortable to implement, is now most
commonly used. JSON Web Token (JWT) is a simple and accessible token format that can
be used with OAuth and is popular with OpenID. JWT tokens have a JSON structure that
has information about expiration time, issuer, subject, and so on. It is more robust than
Simple Web Token (SWT) and simpler than SAML 2.0.

In this section, you learned about the most common user management tools and services.
However, there are various other protocols and services available for user authentication
and authorization. Implementation of the protocols mentioned previously can be
complicated, and there is a large amount of packaged software available that makes the job
easier.

Amazon Cognito is a user access management service provided by AWS that includes
standard-based authorization such as SAML 2.0, OpenID Connect, and OAuth 2.0, along
with an enterprise user directory that provides the ability to connect with AD. Okta and
Ping Identity provide enterprise user management and the ability to communicate with
various service provider tools in one place.

[235]

Security Considerations Chapter 8

Once your application is exposed to the internet, there are always various kinds of attacks
bound to happen. Let's learn about some most common attacks, and how to set up the first
layer of defense for web-layer protection.

Handling web security

As user demand is changing to require 24/7 availability of services, businesses are evolving
to go into online mode and adopting web application models. Web applications also help a
company to gain a global customer base. Businesses such as online banking and e-
commerce websites are always available, and they deal with customers' sensitive data such
as payment information and payer identity.

Now, web applications are central to any business, and these applications are exposed to
the world. Web applications can have vulnerabilities, which makes them exposed to cyber-
attacks and data breaches. Let's explore some common web vulnerabilities and how to
mitigate them.

Web app security vulnerabilities

A web application is prone to security breaches as hackers orchestrate cyber-attacks from
different locations and by various methods. A web application is more vulnerable to theft
than a physical store location. Just as you lock and protect your physical shop, in the same
way, your web app needs to protect itself from unwanted activity. Let's explore some
standard methods of attack that can cause security vulnerabilities in your web application.

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks

A DoS attack attempts to make your website unreachable to your users. To achieve a
successful DoS attack, the attacker uses a variety of technologies that consume network and
system resources, thus interrupting access for legitimate users. The attacker uses multiple
hosts to orchestrate the attack against a single target.

[236]

Security Considerations Chapter 8

A DDoS attack is a type of DoS attack where multiple compromised systems (typically
infected with Trojans) are used to target a single system. Victims of a DDoS attack find that
all their systems are maliciously used and controlled by the hacker in the distributed attack.
As illustrated in the following diagram, a DDoS attack happens when multiple systems
exhaust the bandwidth of resources of a targeted system:

L

¥

Attacker

> ; Target
: DDoS Attack

Masters Bots

DDoS attack

The general concept of a DDoS attack is to leverage additional hosts to amplify the requests
made to the target, rendering them overprovisioned and unavailable. A DDoS attack is
often the result of multiple compromised systems, whereby a botnet puts a flood of traffic
in the targeted system.

The most common DDoS attack happens at the application layer, using either a DNS flood
or a Secure Sockets Layer (SSL) negotiation attack. In DNS floods, attackers exhaust the
resources of a DNS server with too many requests. During SSL negotiations, attackers send
a large amount of unintelligible data for computationally expensive SSL decryption. The
attacker can perform other SSL-based attacks to the server fleet and overburden it with
unnecessary task processing.

At the infrastructure layer, a typical DDoS attack happens in the form of the following:

e User Datagram Protocol (UDP) reflection: With UDP reflection, attackers spoof
the target server's IP address and make a request that returns amplified
significant responses from a hacked reflector server.

e SYN floods: With SYN floods, attackers exhaust the target server's Transmission

Control Protocol (TCP) service by creating and abandoning high numbers of
connections, blocking legitimate users from accessing the server.

[237]

Security Considerations Chapter 8

Often, attackers try to get sensitive customer data, and for that purpose, they use a different
kind of attack called SQL injection (SQL1i) attacks. Let's learn more about them.

SQLi attacks

As the name suggests, in an SQLi attack, attackers inject malicious Structure Query
Language (SQL) to get control of a SQL database and fetch sensitive user data. The attacker
uses SQLi to gain access to unauthorized information, take control of an application, add
new users, and so on.

Take an example of a loan-processing web application. You have 1loanId as a field that
customers can use to get all information related to their loan finance. The typical query will
look like this: SELECT * FROM loans WHERE loanId = 117.If proper care is not taken,
attackers can execute a query such as SELECT * FROM loans WHERE loanId = 117 or
‘1=1" and get access to the entire customer database, as this query will always return the
true result.

The other common method to hack user data through script injection is cross-site scripting
(XSS) where a hacker impersonate himself as legitimate user. Let's explore more about it.

XSS attacks

You must have encountered phishing emails that have links impersonating a website
known to you. Clicking on these links may lead to compromised data through XSS. With
XSS, the attacker attaches their code to a legitimate website and executes it when the victim
loads the web page. The malicious code can be inserted in several ways, such as in a URL
string or by putting a small JavaScript code on the web page.

In an XSS attack, the attacker adds a small code snippet at the end of the URL or client-side
code. When you load the web page, this client-side JavaScript code gets executed and steals
your browser cookies. These cookies often contain sensitive information, such as the access
token and authentication to your banking or e-commerce websites. Using these stolen
cookies, the hacker can get into your bank account and take your hard-earned money.

Cross-Site Request Forgery (CSRF) attacks

A CSRF attack takes advantage of user identity by creating confusion. It typically tricks the
user with a transaction activity in which the state gets changed—for example, changing the
password of a shopping website or requesting a money transfer to your bank.

[238]

Security Considerations Chapter 8

It is slightly different than an XSS attack as, with CSREF, the attacker tries to forge the
request rather than insert a code script. For example, the attacker can forge a request to
transfer a certain amount of money from the user's bank and send that link in an email to
the user. As soon as users click on that link, the bank gets a request and transfers the money
to the attacker's account. CSRF has minimal impact on the individual user account, but it
can be very harmful if attackers are able to get into the admin account.

Buffer overflow and memory corruption attacks

A software program writes data in temporary memory area for fast processing, which is
called a buffer. With a buffer overflow attack, an attacker can overwrite a portion of
memory connected with the buffer. An attacker can deliberately cause a buffer overflow
and access connected memory, where an application executable may be stored. The attacker
can replace the executable with the actual program and take control of the entire system.
Buffer overflow attacks can cause memory corruption with unintentional memory
modification, which the hacker can use to inject code.

Looking at the overall application, there are more security threats that exist at the
infrastructure layer, network layer, and data layer. Let's explore some standard methods to
mitigate and prevent security risks at the web layer.

Web security mitigation

Security needs to be applied to every layer, and special attention is required for the web
layer due to its exposure to the world. For web protection, important steps include keeping
up with the latest security patches, following the best software development practices, and
making sure proper authentication and authorization are carried out. There are several
methods to protect and secure web applications; let's explore the most common methods.

Web Application Firewall (WAF)

WAFs are necessary firewalls that apply specific rules to HTTP and HTTPS traffic (that is,
port 80 and 443). WAFs are software firewalls that inspect your web traffic and verify that it
conforms to the norms of expected behavior. WAFs provide an additional layer of
protection from web attacks.

[239]

Security Considerations Chapter 8

WAF rate limiting is the ability to look at the amount or type of requests sent to your
service and define a threshold that caps how many requests are allowed per user, session,
or IP address. Whitelists and blacklists allow you to allow or block users explicitly. AWS
WAF helps you to secure your web layer by creating and applying rules to filter web traffic.
These rules are based on conditions that include HTTP headers, user geolocation,

malicious IP addresses, or custom Uniform Resource Identifiers (URIs), and so on. AWS
WAF rules block common web exploits such as XSS and SQLi.

AWS WAF provides a centralized mechanism in the form of rules that can be deployed
across multiple websites. This means that you can create a single set of rules for an
environment that has various websites and web applications running. You can reuse rules
across applications instead of recreating them.

Overall, WAF is a tool that applies a set of rules to HTTP traffic. It helps to filter web
requests based on data such as IP addresses, HTTP headers, HTTP body, or URI strings. It
can be useful for mitigating DDoS attacks by offloading illegitimate traffic. Let's learn more
about DDoS mitigation.

DDoS mitigation

Resilient architecture can help to prevent or mitigate DDoS attacks. A fundamental
principle in keeping your infrastructure secure is reducing the potential number of targets
that an attacker can hit. In short, if an instance doesn't need to be public, then don't make it
public. An application-layer attack can spike monitoring metrics such as network
utilization for your content distribution network (CDN), load balancer, and server metrics
due to HTTP flood. You can apply various strategies to minimize the attack surface area:

e Wherever possible, try to reduce the number of necessary internet entry points.
For example, open incoming internet access to your load balancer, not web
servers.

¢ Hide any required internet entry points from untrusted end users so that they
cannot access them.

e Identify and remove any non-critical internet entry points—for example, expose
file-share storage for vendors to upload data with limited access, rather than
exposing it to worldwide internet traffic.

e Isolate the access point and apply specific restrictions policy for end user traffic
compared to application management traffic.

¢ Create a decoupled internet entry point to minimize the attack surface.

[240]

Security Considerations Chapter 8

Your primary goal is to mitigate DDoS attacks at the Edge location of the CDN. It's more
challenging and costly to handle DDoS attacks if they get through to your application
servers. The following diagram illustrates a DDoS mitigation example for an AWS cloud
workload:

j \

Users {\@,} Auto scaling
Bi@

£ CloudFront
WAF ELB

E'G} Edge location : Web app server

_.— T Security group
DMZ public WAF/Proxy private subnet Frontend servers
DDoS \ \Subnet P private subney/

DDoS WAF sandwich mitigation strategy

The preceding diagram illustrates a WAF sandwich architecture, where the WAF appliance
is staged between a load balancer to handle a DDoS attack. Frequent DDoS attacks come
from attacking strategies such as SYN floods and UDP reflection, which Amazon
CloudFront prevents by only accepting well-formed connections before the attacking
strategy can reach your application servers. CDNs such as Amazon CloudFront help to
tackle DDoS attacks by isolating them at a geographically isolated location and preventing
the traffic from affecting other locations. Network firewall security helps you to control
incoming and outgoing traffic at an individual server level.

As mentioned in the previous section, WAFs are used to protect web applications against
exploit attacks such as XSS and SQLi attacks. In addition to this, WAFs also help to detect
and prevent DDoS attacks at the web application layer.

To handle a DDoS attack, you can apply either horizontal or vertical scaling. You can take
advantage of scaling in the following way:

1. First, select the right server size and configuration for your web application.

2. Second, apply a load balancer to distribute traffic among the fleet of servers and
add autoscaling to add/remove servers as required.

3. Finally, use the CDN and DNS server, as they are built to handle traffic at scale.

[241]

Security Considerations Chapter 8

Scaling for DDoS attacks is an excellent example of why it's essential to set reasonable
maximum counts for your servers. A DDoS attack could scale your servers out to a count
that would be extremely costly, while still potentially not being able to avoid becoming
unavailable. Having reasonable maximum limits for expectations of regular traffic spikes
would prevent a DDoS attack costing your company too much money.

In this section, you learned about various security risks and vulnerabilities at the web layer
and some standard methods to protect them. As security needs to be applied to every layer,
let's explore more about the protection of the infrastructure layer.

Securing an application and its infrastructure

Security isn't just about getting through the outer boundary of your infrastructure. It's also
about ensuring that your environments and their components are secured from each other.
You should apply security at each layer of the application, such as the web, application, and
data layer. You should add security controls to all of the system's resources such as load
balancers, network topology, database, and all servers.

For example, in a server instance, you can set up a firewall that allows you to determine
which ports on your instances can send and receive traffic. You can use this to reduce the
probability that a security threat on one instance will spread to every other instance in your
environment. Similar precautions should be taken with other services. Specific ways to
implement this best practice are discussed throughout this section.

Application and operating system hardening

It is not possible to entirely eliminate vulnerabilities in your application, but you can limit
system attacks by hardening your application's operating system, filesystem, and directory.
Once attackers can get into your application, they can get root access and orchestrate an
attack on the entire infrastructure. It is essential to limit attacks to the application level by
restricting the directory by hardening permission. At the process level, restrict memory and
CPU utilization to prevent a DOS attack.

Set the right permission at the file, folder, and file partition levels, which is the only
requirement for the application to execute. Avoid giving root privilege to the application or
their user. You should create a separate user and directory, with only required access for
each application. Don't use common access for all applications.

[242]

Security Considerations Chapter 8

Automate application restart by using tools and avoid a manual approach, whereby users
need to log in to the server to start. You can use process control tools such as DAEMON
Tools and Supervisord to automate an application restart. For a Linux operating system, a
utility such as systemd or System V init scripts help to start/stop the application.

Software vulnerabilities and secure code

It is always recommended to apply the latest security patch to your operating system
provided by your operating system vendor. This helps to fill any security holes in the
system and protect your system from vulnerabilities where attackers are able to steal your
security certificate or run arbitrary code. Make sure to integrate secure coding best practice
to your software development process, as recommended by the Open Web Application
Security Project (OWASP: https://owasp.org/www-project-top-ten/).

Keeping your system up to date with the latest security patch is very important. It is better
to automate the process of the most recent patch installation as soon as it becomes available.
However, sometimes, running a security patch may break your working software, so it's
better to set up a Continuous Integration and Continuous Deployment (CI/CD) pipeline
with automated test and deployment. You will learn more about the CI/CD process in
Chapter 12, DevOps and Solution Architecture Framework.

AWS cloud provides a system manager tool that allows you to apply security patches and
monitoring of your server fleet in the cloud. You can use a tool such as auto-updates or
unattended-upgrades to automate security patch installation.

Network, firewall, and trusted boundary

When it comes to protecting your infrastructure, securing the network comes into
consideration first. The physical security of your IT infrastructure in the data center is to be
taken care of by providers. In the case of cloud-like AWS providers, they take the utmost
care of the physical security of your infrastructure. Let's talk about ensuring network
security, which is your responsibility as an application owner.

To understand it better, let's take an example from a public cloud provider such as AWS
and apply the same example to your on-premises or private cloud network infrastructure
as well. As illustrated in the following diagram, you should apply security at every layer
and define trusted boundaries around each layer, with minimal access:

[243]

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

Security Considerations

Chapter 8

Route Table

Route Table

Route Table

Route Table

f'rr:}hlmern et Gateway
I

Public subnet

Security group
St
{m} WAF ﬂ%ﬁ Load Balancer
ASEN

Public subnet

< Security group
'; NAT Gateway Host

Private subnet

Security group
Application Servers Fleet

Private subnet

K_A Security group
E E 2 Database Servers

Network
ACL

ACL

MNetwork
ACL

ACL
Network
ACL

Network
ACL

Network configuration for infrastructure security

In the preceding diagram, the load balancer is in a public subnet, which can accept internet
traffic and distribute it to the application server fleet. WAF filter traffic is based on set rules
and protects your application from various attacks, as you learned in the previous section.
The application server fleet and database servers are in a private subnet, which means
direct internet access is not reachable to expose them to the public internet. Let's dive deep

into the preceding architecture diagram and walk through each layer, as follows:

e Amazon Virtual Private Cloud (VPC) provides you with logical network
isolation of your infrastructure. Amazon VPC is your network environment in
the cloud. It's where you will launch many of your resources. It's designed to
provide greater control over the isolation of your environments and their
resources from each other. You can have multiple VPCs in each account or

region.

[244]

Security Considerations Chapter 8

e When you create a VPC, you specify its set of IP addresses with Classless Inter-
Domain Routing (CIDR) notation. CIDR notation is a simplified way of showing
a specific range of IP addresses. For example, 10.0.0.0/16 covers all IPs from
10.0.0.0 to 10.0.255.255, providing 65,535 IP addresses to use.

¢ Subnets are segments or partitions of a network divided by the CIDR range. They
create trusted boundaries between private and public resources. Rather than
defining your subnets based on the application or functional tier (web/app/data),
you should organize your subnets based on internet accessibility. A subnet
allows you to define clear, subnet-level isolation between public and private
resources.

¢ In this environment, all of your resources that require direct access to the internet
(public-facing load balancers, Network Address Translation (NAT) instances,
bastion hosts, and so on) would go into the public subnet, while all other
instances (such as database and application resources) would go into your
private subnet. Use subnets to create layers of separation between tiers of
resources, such as putting your application instances and your data resources
into separate private subnets.

¢ The majority of resources on AWS can be hosted in private subnets, using public
subnets for controlled access to and from the internet as necessary. Because of
this, you should plan your subnets so that your private subnets have
substantially more IPs available compared to your public subnets.

e While subnets can provide a fundamental element of segregation between
resources using network Access Control List (ACL) rules, security groups can
give an even more fine-grained level of traffic control between your resources,
without the risk of overcomplicating your infrastructure and wasting or running
out of IPs.

¢ A routing table contains a set of rules, called routes. Routes determine which
application servers are to receive network traffic. For better security, use the
custom route table for each subnet.

e Security groups are the virtual firewalls that control inbound and outbound
traffic for one or more instances from the CIDR block range, or another security
group, as designated resources. As per the principle of least privilege, deny all
incoming traffic by default and create rules that can filter traffic based on TCP,
UDP, and Internet Control Message Protocol (ICMP) protocols.

¢ A Network Access Control List (NACL) is an optional virtual firewall that
controls inbound and outbound traffic at the subnet level. An NACL is a stateless
firewall that is compared to the security group, which is stateful. This means that
if your incoming request is allowed, then the outbound request does not have to
be inspected or tracked. While stateless, you have to define both inbound and
outbound traffic rules explicitly.

[245]

Security Considerations Chapter 8

e Internet traffic routed through an internet gateway (IGW) to make a subnet
public. By default, internet accessibility is denied for internet traffic in your
environment. An IGW needs to be attached to your VPC, and the subnet's route
table should define the rules to the IGW.

e A private subnet blocks all incoming and outgoing internet traffic, but servers
may need outgoing internet traffic for software and security patch installation. A
NAT gateway enables instances in a private subnet to initiate outbound traffic to
the internet and protects resources from incoming internet traffic.

¢ A bastion host acts like a jump server, which allows access to other resources in
the private subnet. A bastion host needs to be hardened with tighter security so
that only appropriate people can access it. To log in to the server, always use
public-key cryptography for authentication rather than a regular user ID and
password method.

Many organizations typically collect, store, monitor, and analyze network flow logs for
various purposes, including troubleshooting connectivity and security issues and testing
network access rules. You need to monitor traffic flow to your system VPC, which includes
recording incoming and outgoing traffic information from your network. VPC Flow Logs
enables you to capture that information, along with accepted and rejected traffic
information for the designated resource to understand traffic patterns better.

Flow Logs can also be used as a security tool for monitoring traffic that is reaching your
instance. You can create alarms to notify if certain types of traffic are detected. You can also
create metrics to help you to identify trends and patterns. You can create a flow log for a
VPC, a subnet, or a network interface. If you create a flow log for a subnet or VPC, each
network interface in the VPC or subnet is monitored.

As you can see, there are multiple layers for security available at the network layer that can
help to protect your infrastructure. Keeping resources in their isolated subnet helps to
reduce the blast radius. If an attacker can penetrate one component, you should be able to
restrict them to limited resources. You can use an Intrusion Detection System (IDS) and
an Intrusion Prevention System (IPS) in front of your infrastructure to detect and prevent
any malicious traffic. Let's learn more about them.

IDS/IPS

An IDS detects any cyber-attack happening through network traffic by recognizing an
attack pattern. An IPS goes a step further and helps to stop malicious traffic proactively.
You need to determine the applicability of the IDS/IPS system as per your application's
requirements. An IDS can be host-based or network-based.

[246]

Security Considerations Chapter 8

Host-based IDS

In an IDS, a host- or agent-based IDS is running on each host of your environment. It can
review the activity within that host to determine if an attack has occurred and has been
successful. It can do this by inspecting logs, monitoring the filesystem, monitoring network
connections to the host, and so on. The software or agent then communicates with a
central/command application about the health or security of the host it is monitoring.

Pros for host-based solutions include that they can deeply inspect the activity inside each
host. They can horizontally scale as far as required (each host gets its own agent), and do
not need to impact the performance of running applications. The cons include the
additional configuration management overheads that can be introduced if managing agents
on many servers, which are burdensome for an organization.

As each agent is operating in isolation, widespread/coordinated attacks can be harder to
detect. To handle coordinated attacks, the system should respond immediately across all
hosts, which requires the host-based solution to play well with the other components, such
as the operating system and the application interface, deployed on the host.

Network-based IDS

A network-based IDS inserts an appliance into the network, through which all traffic is
routed and inspected for attacks. The pros include a simple/single component that needs to
be deployed and managed away from the application hosts. Also, it is hardened or
monitored in a way that might be burdensome across all hosts. An individual/shared view
of security exists in a single place so that the big picture can be inspected for
anomalies/attacks.

However, a network-based IDS includes the performance hit of adding a network hop to
applications. The need to decrypt/re-encrypt traffic to inspect it is both a massive
performance hit and a security risk that makes the network appliance an attractive target.
Any traffic that IDS unable to decrypt cannot inspect/detect anything.

An IDS is a detection and monitoring tool and does not act on its own. An IPS detects,
accepts, and denies traffic based on set rules. IDS/IPS solutions help to prevent DDoS
attacks due to their anomaly-detection capabilities that make them able to recognize when
valid protocols are used as an attack vehicle. An IDS and an IPS read network packets and
compare contents to a database of known threats. Continuous auditing and scanning are
required for your infrastructure to proactively secure it from any attack, so let's learn more
about this.

[247]

Security Considerations Chapter 8

In this section, you learned all about securing your infrastructure from various types of
attacks. The goal of these attacks is to get hold of your data. You should secure your data in
such a way that an attacker is not able to acquire sensitive information even after getting
hold of the data. Let's learn about data protection using security at the data layer,
encryption, and backup.

Data security

In today's digital world, every system revolves around data. Sometimes, this data may
contain sensitive information such as customer health records, payment information, and
government identity. Securing customer data to prevent any unauthorized access is most
important. There are many industries that place stress on data protection and security.

Before architecting any solution, you should define basic security practices as per the
application objective, such as complying with regulatory requirements. There are several
different approaches used when addressing data protection. The following section
describes how to use these approaches.

Data classification

One of the best practices is to classify your data, which provides a way to categorize and
handle organizational data based on levels of sensitivity. According to data sensitivity, you
can plan data protection, data encryption, and data access requirements.

By managing data classification as per your system's workload requirements, you can
create the data controls and level of access needed for the data. For example, content such
as a user rating and review is often public, and it's fine to provide public access, but user
credit card information is highly sensitive data that needs to be encrypted and put under
very restricted access.

At a high level, you can classify data into the following categories:

e Restricted data: This contains information that could harm the customer directly
if it got compromised. Mishandling of restricted data can damage a company's
reputation and impact a business adversely. Restricted data may include
customer Personally Identifiable Information (PII) data such as social security
numbers, passport details, credit card numbers, and payment information.

e Private data: Data can be categorized as confidential if it contains customer-
sensitive information that an attacker can use to plan to obtain their restricted
data. Confidential data may include customer email IDs, phone numbers, full
names, and addresses.

[248]

Security Considerations Chapter 8

e Public data: This is available and accessible to everyone, and requires minimal
protection—for example, customer ratings and reviews, customer location, and
customer username if the user made it public.

You can have a more granular category depending on the type of industry and the nature
of the user data. Data classification needs to balance between data usability versus data
access. Putting different levels of access, as mentioned previously, helps to restrict only the
necessary data and make sure sensitive data is not exposed. Always avoid giving direct
human access to data and add some tools that can generate a read-only report for users to
consume in a restrictive manner.

Data encryption

Data encryption is a method to protect your data whereby you convert your data from
plaintext to encoded ciphertext format using the encryption key. To read these ciphertexts,
they first need to be decrypted using the encryption key, and only authorized users will
have access to those decryption keys. Commonly used key-based encryption falls into one
of two categories of cryptography:

e Symmetric-key encryption: With symmetric encryption algorithms, the same
key is used to encrypt and decrypt the data. Each data packet is self-encrypted
with a secret key. Data is encrypted while saving and decrypted during retrieval.
Earlier, symmetric encryption used to be applied as per the Data Encryption
Standard (DES), which used a 56-bit key. Now, the Advanced Encryption
Standard (AES) is heavily used for symmetric encryption, which is more reliable
as it uses a 128-bit, 192-bit, or 256-bit key.

¢ Asymmetric-key encryption: With the help of asymmetric algorithms, two
different keys can be used, one to encrypt and one to decrypt. In most cases, the
encryption key is a public key and the decryption key is a private key.
Asymmetric key encryption is also known as public-key encryption. Both public
and private keys are unidentical, but they are paired together. The private key is
only available to one user, while the public key can be distributed across multiple
resources. Only the user who has a private key can decrypt the data.
Rivest-Shamir-Adleman (RSA) is one of the first and most popular public key-
encryption algorithms used to secure data transmissions over the network.

If you are encrypting your data with an AES 256-bit security key, it's become almost
impossible to break the encryption. The only way to decrypt is by getting hands-on
encryption, which means you need to secure your code and keep it in a safe place. Let's
learn about some essential management methods to safeguard your encryption key.

[249]

Security Considerations Chapter 8

Encryption key management

Key management involves controlling and maintaining your encryption key. You need to
make sure that only authorized users can create and access the encryption key. Any
encryption key management system handles storage, rotation, and destruction of the key in
addition to access management and key generation. Key management differs depending on
whether you are using a symmetric or asymmetric algorithm. The following methods are
popular for key management.

Envelope encryption

Envelope encryption is a technique to secure your data encryption key. Data encryption
keys are symmetric keys to increase the performance of data encryption. Symmetric
encryption keys work with an encryption algorithm such as AES and produce ciphertext
that you can store safely, as it is not readable by a human. However, you need to save the
symmetric encryption data key along with data to use it for data decryption, as needed.
Now, you need to further protect the data key in isolation, which is where envelope
encryption helps you to protect it. Let's understand it in more detail with the help of

the following diagram:

Data Encryption Flow

=
\

Key Used to encrypt data

along with encryption algorithm

8

~ Encrypted data

Hardware / Software

‘Symmemc Key gensrated| Data key ~ Plaintextdata

Encrypted Data in Storagg/‘

(a)

/ User access master key Encrypted Key in Smraie\

Key Management System
Store Master key associated

5
to data Key

7
n‘ 5 » + -0
Data User/ ﬁ
API Symmetric 5 Master Key
data key
Encrypted Data Key

You don't want to store the key Key Encryption Key

with the encrypted data
\ Key Encryption Flow /

Envelope encryption

[250]

Security Considerations Chapter 8

The preceding diagram illustrates the following flow to explain envelope encryption:

1. The symmetric key is generated from software or hardware.
2. The generated symmetric data key is used to encrypt plaintext data.

3. The key encrypts data using an algorithm such as AES and generates encrypted
ciphertext data.

4. The encrypted data is stored in targeted storage.

5. As the data key needs to be stored with ciphered data, the data key needs to be
encrypted further. The user gets the customer master key stored in the key
management systems to encrypt the data key.

6. The data key is encrypted using the master key. Your master key is the key
encryption key as it encrypts the data encryption key. Only the master key can
encrypt multiple data keys, and it is securely stored in the key management
systems, with restricted access.

7. The master key encrypts data key, and encrypted data key store along with
ciphered data in storage, where master key securely stores in key management
system with restricted access.

If a user wants to decrypt data, then they first need a master key that has, in turn, an
encrypted data encryption key. This master key can be stored in a separate access system
such as a hardware security module (HSM) or software-based key management service
provided by cloud providers such as AWS. Let's look into this in more detail.

AWS Key Management Service (KMS)

AWS KMS uses envelope encryption whereby a unique data key encrypts customer data,
and KMS master keys encrypt data keys. You can bring your key material to AWS KMS
and manage user access, key distribution, and rotation from a centralized place. You can
also disable unused keys, and a low number of keys helps to improve the performance of
the application and encourage better key management.

AWS KMS is designed to limit access and protect master keys. KMS helps you to
implement key security best practices by never storing plaintext master keys on disk or in
memory. KMS also gracefully rotates the master key to secure it further.

As AWS KMS is a multitenancy key management module, a customer wants to have a
dedicated key management module due to compliance. Also, the customer may have an old
HSM, and they want to follow the same model. The HSM is single-tenant hardware in AWS
and is called AWS CloudHSM. You can choose your own HSM vendor as well. Let's
explore HSM in more depth.

[251]

Security Considerations Chapter 8

Hardware security module (HSM)

An HSM is a device that is designed to secure encryption keys and associated
cryptographic operations. An HSM is designed with physical mechanisms to protect the
keys, which include tamper detection and response. In case of any key tampering, the HSM
destroys the keys and prevents any security compromise.

An HSM includes logical protections to limit access controls. Logical separation helps the
HSM appliance administrator to manage the device securely. Access restriction applies
rules for users who can connect it to the network and provision the IP address. You can
create a separate role for everyone, including security officers, appliance admin, and users.

As the loss of a key can make your data useless, you need to make sure of high availability
for your HSM by maintaining at least two HSMs in different geographic locations. You can
use other HSM solutions, such as SafeNet or Voltage. To protect your key, choose a
managed HSM provided by cloud services such as AWS CloudHSM or CipherCloud.

Data encryption at rest and in transit

Data at rest means it is stored somewhere such as a storage area network (SAN) or
network-attached storage (NAS) drive, or in cloud storage. All sensitive data needs to be
protected by applying symmetric or asymmetric encryption, explained in the previous
section, with proper key management.

Data in transit means data in motion and transferred over the network. You may encrypt
data at rest from source and destination, but your data transfer pipeline needs to be secure
when transferring data. When transferring data over an unencrypted protocol such as
HTTP, it can get leaked by an attack such as an eavesdropping or man-in-the-middle
(MITM) attack.

In an eavesdropping attack, the attacker captures a small packet from a network and uses it
to search for any other type of information. A MITM attack is a tampering-based attack,
where the attacker secretly alters the communication to start communication on behalf of
the receiver. These kinds of attacks can be prevented by transferring data over SSL, using a
strong protocol such as Transport Security Layer (TSL).

You will observe that most websites now use HTTPS protocol for communication, which
encrypts data using SSL. By default, HTTP traffic is unprotected. SSL/TLS protection for
HTTP traffic (HTTPS) is supported by all web servers and browsers. HTTP traffic is also
applicable to service-oriented architectures such as Representational State Transfer
(REST)- and Simple Object Access Protocol (SOAP)-based architectures.

[252]

Security Considerations Chapter 8

SSL/TSL handshakes use certificates to exchange a public key using asymmetric encryption,
and then use the public key to exchange a private key using symmetric encryption. A
security certificate is issued by an acceptable Certification Authority (CA) such as Verisign.
Procured security certificates need to be secured using a Public Key Infrastructure (PKI).
The public cloud, such as AWS, provides an AWS Certificate Manager (ACM) managed

Non-web transmission of data over the network should also be encrypted, and this includes
Secure Shell (SSH) and Internet Protocol Security (IPsec) encryption. SSH is most
prevalent while connecting to servers, and IPsec is applicable to securing corporate traffic
transferred over a virtual private network (VPN). File transfer should be secured using
SSH File Transfer Protocol (SFTPS) or FTP Secure (FTPS), and email server
communication needs to be secured by Simple Mail Transfer Protocol Secure (SMTPS)

or Internet Message Access Protocol (IAMPS).

In this section, you learned about various methods to secure data at rest and in motion with
different cryptographic techniques. Data backup and recovery is an important aspect of
protecting your data in the case of any unforeseen incidents. You will learn more about
data backup in chapter 9, Architectural Reliability Considerations, in the Disaster recovery
planning section.

There are many governing bodies available that publish compliance, which is a set of
checklists to ensure customers' data security. Compliance also makes sure that
organizations comply with industry and local government rules. Let's learn more about
various compliance measures in the next section.

Security and compliance certifications

There are many compliance certifications depending on your industry and geographical
location to protect customer privacy and secure data. For any solution design, compliance
requirements are among the critical criteria that need to be evaluated. The following are
some of the most popular industry-standard compliances:

e Global compliance includes certifications that all organizations need to adhere to,
regardless of their region. These include ISO 9001, ISO 27001, ISO 27017, ISO
27018, SOC 1, SOC 2, SOC 3, and CSA STAR for cloud security.

¢ The US government requires various kinds of compliance to handle public sector
workload. These include FedRAMP, DoD SRG Level-2, 4, and 5, FIPS 140, NIST
SP 800, IRS 1075, ITAR, VPAT, and CJIS.

[253]

Security Considerations Chapter 8

e Industry-level compliance of application apply to a particular industry. These
include PCI DSS, CDSA, MPAA, FERPA, CMS MARS-E, NHS IG Toolkit (in the
UK), HIPAA, FDA, FISC (in Japan), FACT (in the UK), Shared Assessment, and
GLBA.

¢ Regional compliance certification applies to a particular country or region. These
include EU GDPR, EU Model Clauses, UK G-Cloud, China DJCP, Singapore
MTCS, Argentina PDPA, Australia IRAP, India MeitY, New Zealand GCIO,
Japan CS Mark Gold, Spain ENS and DPA, Canada Privacy Law, and US Privacy
Shield.

As you can see, there are many compliance certifications available from different regulatory
bodies as per industry, region, and government policy. We are not going into details of
compliance, but you need to evaluate your application with compliance requirements
before starting your solution design. Compliance requirements influence the overall
solution design heavily. You need to decide what kind of encryption is required, as well as
logging, auditing, and location of your workload based on your compliance needs.

Logging and monitoring help to ensure robust security and compliance. Logging and
monitoring are essential. If an incident occurs, your team should be notified immediately
and be ready to respond to incidents. You are going to learn more about monitoring and
alert methods in chapter 10, Operational Excellence Considerations.

There are several compliance industries depending on your application geolocation,
industry, and government rules. You learned about the various categories of compliance
and some common compliance standards appropriate for each group. Many organizations
are moving to the cloud, so it's vital to understand security in the cloud.

The cloud's shared security responsibility
model

As the cloud is becoming regularly used and many organizations are moving their
workload to a public cloud such as AWS, Google Cloud Platform (GCP), and Azure, the
customer needs to understand the cloud security model. Security in the cloud is a joint
effort between the customer and the cloud provider. Customers are responsible for what
they implement using cloud services and for the applications connected to the cloud. In the
cloud, customer responsibility for application security needs depends upon the cloud
offerings they are using and the complexity of their system.

[254]

Security Considerations Chapter 8

The following diagram illustrates a cloud security model from one of the largest public
cloud providers (AWS), and it's pretty much applicable to any public cloud provider:

Customer Data

Platform, Applications, Identity and Access Management

Customer

Responsibility Operating System, Network, and Firewall Configuration

Client-side data
encryption and data
integrity authentication

Server-side encryption Network traffic protection
(File system and/or data) (Encryptionfintegrity/identity)

AWS Foundation Services

Storage Database Networking

AWS
Responsibility

Regi
AWS Global ogions Edge
Infrastructure Availability Zones Locations

AWS cloud shared security responsibility model

As shown in the preceding diagram, AWS handles the security of the cloud, specifically
the physical infrastructures that host your resources. This includes the following:

¢ Data centers: Non-descript facilities, 24/7 security guards, two-factor
authentication, access logging and review, video surveillance, and disk
degaussing and destruction.

e Hardware infrastructure: Servers, storage devices, and other appliances that rely
on AWS services.

¢ Software infrastructure: Host operating systems, service applications, and
virtualization software.

¢ Network infrastructure: Routers, switches, load balancers, firewalls, cabling, and
so on. Also includes continuous network monitoring at external boundaries,
secure access points, and redundant infrastructure.

The customer handles the security in the cloud, which includes the following:

¢ Server's operating system: The operating system installed on the server could be
vulnerable to attacks. Patching and maintenance of the operating system is the
customer's responsibility, as software applications depend heavily upon it.

[255]

Security Considerations Chapter 8

e Application: Every application and its environments, such as dev, test, and prod,
are maintained by the customer. So, handling password policies and access
management is the customer's responsibility.

¢ Operating system-/host-based firewalls: Customers need to protect their entire
system from external attacks. However, the cloud provides security in that area,
but customers should consider an IDS or an IPS to add an extra layer of security.

e Network configuration and security group: The cloud provides tools to create a
network firewall, but it's up to application requirements as to which traffic needs
to be stopped or allowed to go through. Customers are responsible for setting up
firewall rules to secure their systems from external and internal network traffic.

e Customer data and encryption: Data handling is the customer's responsibility, as
they are more aware of the data protection that's needed. The cloud provides
tools to apply for data protection by using various encryption mechanisms, but
it's the customer's responsibility to apply those tools and secure their data.

The public cloud also provides various compliance certifications that apply to the hardware
portions managed by them. To make your application compliant, you need to handle and
complete audits for application-level complaints. As a customer, you get an additional
advantage by inheriting security and compliance provided by the cloud provider.

Try to automate security best practices wherever possible. Software-based security
mechanisms improve your ability to scale more rapidly, cost-effectively, and securely.
Create and save a custom baseline image of a virtual server, and then use that image
automatically on each new server you launch. Create an entire infrastructure that is defined
and managed in a template to replicate best practices for the new environment.

The cloud provides all kinds of tools and services to secure your application in the cloud,
along with in-built security at the IT infrastructure level. However, it's up to the customer
how they want to utilize those services and make their application secure in the cloud. The
overall cloud provides better visibility and centralized management for your IT inventory,
which helps to manage and secure your system.

Security is the priority for any solution, and a solution architect needs to make sure their
application is secure and protected from any attack. Security is a continuous effort. Each
security incident should be treated as an improvement opportunity for the application. A
robust security mechanism should have authentication and authorization controls. Every
organization and application should automate responses to security events and protect
infrastructure at multiple levels.

[256]

Security Considerations Chapter 8

Summary

In this chapter, you learned about various design principles to apply security best practices
for your solution design. These principles include key considerations during solution
design to protect your application by putting in the appropriate access control, data
protection, and monitoring. You need to apply security at every layer. Starting with user
authentication and authorization, you learned about applying security at the web layer,
application layer, infrastructure layer, and database layer. Each layer has a different kind of
attack, and you learned various methods to protect your application with the available
technology choices.

For user management, you learned about using FIM and SSO to handle corporate users,
and various methods for implementation of user authentication and authorization. These
choices include enterprise management services such as Microsoft's AD and AWS Directory
Service. You also have options to handle millions of users, using OAuth 2.0.

At the web layer, you learned about various attack types such as DDoS, SQLi, and XSS.
You learned about how to protect those attacks, using different DDoS prevention
techniques and network firewalls. You learned various techniques to protect code at the
application layer and ensure the security of your infrastructure. You dived deep into
different network components and methods to build trusted boundaries to limit the attack
radius.

You learned about data protection by putting proper data classification in place and tagged
your data as confidential, private, or public data. You learned about symmetric and
asymmetric algorithms and how they differ from each other. You learned about using key
management to protect the public/private encryption key. Data can be in motion or sitting
in storage. You learned about how to protect data in both modes. In the end, you learned
about various compliance and shared security responsibility models applicable to a cloud
workload.

While this chapter is about applying security best practices, reliability is another essential
aspect of any solution design. To make your business successful, you want to create a
reliable solution that should always be available and able to handle workload fluctuation.
In the next chapter, you will learn about the best practices to make your application reliable
with the available technology choices. You will learn various disaster recovery and data
replication strategies to make your application more reliable.

[257]

Architectural Reliability
Considerations

Application reliability is one of the essential aspects of architecture design. A reliable
application helps to win customer trust by making it available whenever the customer
needs it. High availability is one of the mandatory criteria for online applications. Users
want to browse your application anytime and complete tasks such as shopping and
banking as per their convenience. Reliability is one of the essential recipes for any business
to be successful.

Reliability means the ability of the system to recover from failure. It's about making your
application fault-tolerant in such a way that it can recover without impacting the customer
experience. A reliable system should be able to recover from any infrastructure failure or
server failure. Your system should be prepared to handle any situation that could cause
disruption.

In this chapter, you will learn various design principles applicable to making your solution
reliable. Reliability needs to consider every component of the architecture. You will get an
understanding of the right selection of technology to ensure your architecture's reliability at
every layer. You will learn the following best practices for reliability in this chapter:

e Design principles for architectural reliability
¢ Technology selection for architectural reliability
e Improving reliability with the cloud

By the end of this chapter, you will have learned about various disaster recovery techniques
to ensure the high availability of your application and data replication methods for
business process continuations.

Architectural Reliability Considerations Chapter 9

Design principles for architectural reliability

The goal of reliability is to keep the impact of any failure to the smallest area possible. By
preparing your system for the worst, you can implement a variety of mitigation strategies
for the different components of your infrastructure and applications.

Before a failure occurs, you want to test your recovery procedures. It is essential to try to
automate recovery as much as possible to reduce the possibility of human error.

The following are the standard design principles that help you to strengthen your system
reliability. You will find that all reliability design principles are closely related and
complement each other.

Making systems self-healing

System failure needs to be predicted in advance, and in the case of failure incidence, you
should have an automated response for system recovery, which is called system self-
healing. Self-healing is the ability of the solution to automatically recover from failure. A
self-sealing system detects failure proactively and responds to it gracefully with minimal
customer impact. Failure can happen in any layer of your entire system, which includes
hardware failure, network failure, or software failure. Usually, data center failure is not an
everyday event, and more granular monitoring is required for frequent failures such

as database connection and network connection failures. The system needs to monitor the
failure and act to recover.

To handle failure response, first, you need to identify Key Performance Indicators (KPIs)
for your application and business. At the user level, these KPIs may include the number of
requests served per second or page load latency for your website. At the infrastructure
level, you can define maximum CPU utilization, such as it should not go above 60%.
Memory utilization should not go beyond 50% of the total available Random-Access
Memory (RAM) and so on.

As you defined your KPIs, you should put the monitoring system in place to track failures
and notify you as your KPIs reach the threshold. You should apply automation around
monitoring so that the system can self-heal in the event of any incidents. For example, add
more servers when CPU utilization reaches near 50%—proactive monitoring helps to
prevent failures.

[259]

Architectural Reliability Considerations Chapter 9

Applying automation

Automation is the key to improving your application's reliability. Try to automate
everything from application deployment and configuration to the overall infrastructure.
Automation provides you with agility where your team can move fast and experiment
more often. You can replicate the entire system infrastructure and the environment with a
single click to try a new feature.

You can plan the Auto Scaling of your application based on a schedule, for example, an e-
commerce website has more user traffic on weekends. You can also automate scaling based
on the user request volume to handle the unpredictable workload. Use automation to
launch independent and parallel simulation jobs that will provide greater accuracy when
combined with the results from the first simulation job. Repeating the same steps to
configure each environment manually can be error prone. There is always a chance of
human error, such as a typo, for example, in a database name.

Frequently, you need to apply the same configuration that you have on your development
environment to Quality Assurance (QA) environments. There may be multiple QA
environments for each stage of testing, which includes functional testing, UAT, and stress
testing environments. Often, a QA tester discovers a defect caused by wrongly configured
resources, which could introduce a further delay in the test schedule. Most importantly,
you cannot afford to have a configuration error in production servers.

To reproduce precisely the same configuration, you may need to document a step-by-step
configuration instruction. The solution to this challenge is to automate these steps by
creating a script. The automation script itself can be the documentation.

As long as the script is correct, it is more reliable than manual configuration. It is certainly
reproducible. Detecting unhealthy resources and launching replacement resources can be
automated, and you can notify the IT operation team when resources are changed.
Automation is a key design principle that needs to apply everywhere in your system.

Creating a distributed system

Monolithic applications have low reliability when it comes to system uptime, as one small
issue in a particular module can bring down the entire system. Dividing your application
into multiple small services reduces the impact area, so that issue is one part of the
application shouldn't impact the whole system, and the application can continue to serve
critical functionality. For example, in an e-commerce website, an issue with the payment
service should not affect customer's ability to place orders, as payment can be processed
later.

[260]

Architectural Reliability Considerations Chapter 9

At the service level, scale your application horizontally to increase system availability.
Design a system so that it can use multiple smaller components working together rather
than a single monolithic system to reduce the impact area. In a distributed design, requests
are handled by different components of the system, and the failure of one component
doesn't impact the functioning of other parts of the system. For example, on an e-commerce
website, the failure of warehouse management components will not impact the customer
placing the order.

However, the communication mechanism can be complicated in a distributed system. You
need to take care of system dependencies by utilizing the circuit breaker pattern. As you
learned about the circuit breaker pattern in chapter ¢, Solution Architecture Design Patterns,
the basic idea behind the circuit breaker is simple. You wrap a protected function call in a
circuit breaker object, which monitors for failures.

Monitoring capacity

Resource saturation is the most common reason for application failure. Often, you will
encounter the issue where your applications start rejecting requests due to CPU, memory,
or hard disk overload. Adding more resources is not always a straightforward task as you
should have additional capacity available when needed.

In a traditional on-premises environment, you need to calculate server capacity based on
the assumption in advance. Workload capacity prediction becomes more challenging for a
business such as a shopping website and any online business. Online traffic is very
unpredictable and fluctuates heavily driven by global trends. Usually, procuring hardware
can take anywhere between 3 to 6 months, and it's tough to guess capacity in advance.
Ordering excess hardware will incur an extra cost as a resource is sitting idle, and a lack of
resources will cause the loss of business due to application unreliability.

You need an environment where you don't need to guess capacity, and your application
can scale on-demand. A public cloud provider such as AWS provides Infrastructure-as-a-
Service (IaaS), which facilitates the on-demand availability of resources. In the cloud, you
can monitor system supply and demand. You can automate the addition or removal of
resources as needed. It allows you to maintain the level of resources that will satisfy
demand without over-provisioning or under-provisioning.

[261]

Architectural Reliability Considerations Chapter 9

Performing recovery validation

When it comes to infrastructure validation, most of the time, organizations focus on
validating a happy path where everything is working. Instead, you should validate how
your system fails and how well your recovery procedures work. Validate your application,
assuming everything fails all the time. Don't just expect that your recovery and failover
strategies will work. Make sure to test them regularly, so you're not surprised if something
does go wrong.

A simulation-based validation helps you to uncover any potential risks. You can automate
a possible scenario that could cause your system failure and prepare an incident response
accordingly. Your validation should improve application reliability in such a way that
nothing will fail in production.

Recoverability is sometimes overlooked as a component of availability. To improve the
system's Recovery Point Objective (RPO) and Recovery Time Objective (RTO), you
should back up data and applications along with their configuration as a machine image.
You will learn more about RTO and RPO in the next section. In the event that a natural
disaster makes one or more of your components unavailable or destroys your primary data
source, you should be able to restore the service quickly and without lost data. Let's talk
more about specific disaster recovery strategies to improve application reliability and
associated technology choices.

Technology selection for architecture
reliability

Application reliability often looks at the availability of the application to serve users.
Several factors go into making your application highly available. Fault tolerance refers to
the built-in redundancy of an application's components. Scalability is how your
application's infrastructure can respond to increased capacity needs to ensure your
application is available and performing within your required standards.

To make your application reliable, you should able to restore service quickly and without
lost data. Going forward, we are going to address the recovery process as disaster recovery.
Before going into various disaster recovery scenarios, let's learn more about the Recovery
Time Objective (RTO)/Recovery Point Objective (RPO) and data replication.

[262]

Architectural Reliability Considerations Chapter 9

Planning the RTO and RPO

Any application needs to define service availability in an aspect of a Service-Level
Agreement (SLA). Organizations define SLAs to ensure application availability and
reliability for their users. You may want to define an SLA, saying my application should be
99.9% available in a given year or the organization can tolerate it if the application is down
for 43 minutes per month, and so on. The RPO and RTO for an application is mostly driven
by the defined SLA.

The RPO is the amount of data loss an organization can tolerate in the aspect of time. For
example, my application is fine if it loses 15 minutes' worth of data. The RPO helps to
define a data backup strategy. The RTO is about application downtime and how much time
my application should take to recover and function normally after failure incidence. The
following diagram illustrates the difference between the RTO and RPO:

Last Backup Recovered Backup
Failure
w
RPO RTO
«L
How often does data need to be How long can the application
. backed up? be unavailable?
... -

RTO and RPO

In the preceding diagram, suppose the failure occurs at 10 A.M. and you took the last
backup at 9 A.M.; in the event of a system crash, you would lose 1 hour of data. When you
restore your system, there is an hour's worth of data loss, as you were taking data backups
every hour. In this case, your system RPO is 1 hour, as it can tolerate living with 1 hour's
worth of data loss. In this case, the RPO indicates that the maximum data loss that can be
tolerated is 1.

If your system takes 30 minutes to restore to the backup and bring up the system, then it
defines your RTO as half an hour. It means the maximum downtime that can be tolerated is
30 minutes. The RTO is the time it takes to restore the entire system after a failure that
causes downtime.

[263]

Architectural Reliability Considerations Chapter 9

An organization typically decides on an acceptable RPO and RTO based on the user
experience and financial impact on the business in the event of system unavailability.
Organizations consider various factors when determining the RTO/RPO, which includes
the loss of business revenue and damage to their reputation due to downtime. IT
organizations plan solutions to provide effective system recovery as per the defined RTO
and RPO.

Replicating data

Data replication and snapshots are the key to disaster recovery and making your system
reliable. Replication creates a copy of the primary data site on the secondary site, and in the
event of primary system failure, the system can fail over to the secondary system and keep
working reliably. This data could be your file data stored in a NAS drive, database
snapshot, or machine image snapshot. Sites could be two geo-separated on-premises
systems, two separate devices on the same premises, or a physically separated public cloud.

Data replication is not only helpful for disaster recovery, but it can speed up an
organization's agility by quickly creating a new environment for testing and development.
Data replication can be synchronous or asynchronous.

Synchronous versus asynchronous replication

Synchronous replication creates a data copy in real time. Real-time data replication helps to
reduce the RPO and increase reliability in the event of a disaster. However, it is expensive
as it requires additional resources in the primary system for continuous data replication.

Asynchronous replication creates copies of data with some lag or as per the defined
schedule. However, asynchronous replication is less expensive as it uses fewer resources
compared to synchronous replication. You may choose asynchronous replication if your
system can work with a longer RPO.

In terms of database technology such as Amazon RDS, synchronous replication is applied if
we create RDS with multiple availability zone failover. For read replicas, there is
asynchronous replication, and you can use that to serve report and read requests.

[264]

Architectural Reliability Considerations Chapter 9

As illustrated in the following architecture diagram, in synchronous replication, there is no
lag of data replication between the master and standby instance of the database while, in
the case of asynchronous replication, there could be some lag while replicating the data
between the master and reapplication instance:

Synchronous Data Replication

Master Stand By

@ Time Difference = 0ms

Asynchronous Data Replication

Master
Stand By

Time Difference =0ms
Ni @

Synchronous and asynchronous data replication

Let's explore some methods of data reapplication for the synchronous and asynchronous
approaches.

Replication methods

The replication method is an approach to extract data from the source system and create a
copy for data recovery purposes. There are different replication methods available to store
a copy of data as per the storage type for business process continuation. Replications can be
implemented using the following methods:

e Array-based replication: In this, built-in software automatically replicates data.
However, both the source and destination storage arrays should be compatible
and homogenous to replicate data. A storage array contains multiple storage
disks in a rack.

Large enterprises use array-based replication due to the ease of deployment and
the reduction in the compute power host system. You can choose array-based
replication products such as HP Storage, EMC SAN Copy, and NetApp
SnapMirror.

¢ Network-based replication: This can copy data between a different kind of
heterogeneous storage array. It uses an additional switch or appliance between
incompatible storage arrays to replicate data.

[265]

Architectural Reliability Considerations Chapter 9

In network-based replication, the cost of replication could be higher as multiple
players come into the picture. You can choose from networked-based replication
products such as NetApp Replication X and EMC RecoverPoint.

¢ Host-based replication: In this, you install a software agent on your host that can
replicate data to any storage system such as NAS, SAN, or DAS. You can use a
host-based software vendor, for example, Symantec, Commvault, CA, or Vision
Solution.

It's highly popular in Small and Medium-Sized Businesses (SMBs) due to
fewer upfront costs and heterogeneous device compatibility. However, it
consumes more compute power as the agent needs to install on host operating
system.

e Hypervisor-based replication: This is VM-aware, which means it can copy the
entire virtual machine from one host to another. As organizations mostly use a
virtual machine, it provides a very efficient disaster recovery approach to reduce
the RTO.

Hypervisor-based replication is highly scalable and consumes fewer resources
than host-based replication. It can be carried out by native systems built into
VMware and Microsoft Windows. You can choose a product such as Zerto to
perform hypervisor-based replication or another product from one of the various
vendors.

Previously, in chapter 3, Attributes of the Solution Architecture, you learned about scalability
and fault tolerance. In chapter 6, Solution Architecture Design Patterns, you learned about
various design patterns to make your architecture highly available. Now, you will discover
multiple ways to recover your system from failure and make it highly reliable.

Planning disaster recovery

Disaster Recovery (DR) is about maintaining business continuation in the event of system
failure. It's about preparing the organization for any possible system failure and the ability
to recover from it. DR planning includes multiple dimensions, which include hardware or
software failure. While planning for disaster recovery, always ensure you consider other
operational failures, which include a power outage, network outage, heating and cooling
system failure, physical security breach, and different incidents such as fire, flood, or
human error.

[266]

Architectural Reliability Considerations Chapter 9

Organizations invest effort and money in disaster recovery planning as per system
criticality and impact. A revenue-generating application needs to be up all of the time as it
has a significant impact on company image and profitability. Such an organization invests
lots of effort in creating their infrastructure and training their employees for a disaster
recovery situation. Disaster recovery is like an insurance policy that you have to invest and
maintain even when you are not going to utilize it. Similarly, during normal operations, the
infrastructure typically is under-utilized and over-provisioned.

Applications can be placed on a spectrum of complexity. There are four DR scenarios, sorted
from highest to lowest RTO/RPO as follows:

e Backup and restore

o Pilot light

e Warm standby

e Multi-site active-active

As shown in the following diagram, in DR planning, as you progress with each option,
your RTO and RPO will reduce while the cost of implementation increases. You need to
make the right trade-off between RTO/RPO requirements and cost as per your application
reliability requirement:

Reduce RTO and RPO

| >

Backup & Warm Multi
Restore Standby Site

&)

Reduce Cost

Disaster recovery options spectrum

Let's explore each of the aforementioned options in detail with technology choices. Now,
the public cloud, such as AWS, enables you to operate each of the preceding DR strategies
cost-effectively and efficiently.

Business continuity is about ensuring critical business functions continue to operate or
function quickly in the event of disasters. As organizations are opting to use the cloud for
disaster recovery plans, let's learn about various disaster recovery strategies between an on-
premise environment and the AWS cloud.

[267]

Architectural Reliability Considerations Chapter 9

Backup and restore

Backup is the lowest cost option but with higher RPO and RTO. This method is simple to
get started and extremely cost-effective as you need backup storage. This backup storage
could be a tape drive, hard disk drive, or network access drive. As your storage needs
increase, adding and maintaining more hardware across regions could be a daunting task.
One of the simple and cost-effective options is to use the cloud as backup storage. Amazon
S3 provides unlimited storage capacity at a low cost and with a pay-as-you-go model.

The following diagram shows a basic disaster recovery system. In this diagram, the data is
in a traditional data center, with backups stored in AWS. AWS Import/Export or Snowball
is used to get the data into AWS, and the information is later stored in Amazon S3:

P

User Device

Route 53

On-Premise @ AWS Cloud

'
\A = Amazon S3 Bucket
Traditional Server with Object

AWS Snowball

Data backup to Amazon S3 from on-premises infrastructure

You can use other third-party solutions available for backup and recovery. Some of the
most popular choices are NetApp, VMware, Tivoli, Commvault, and CloudEndure. You
need to take backups of the current system and store them in Amazon S3 using a backup
software solution. Make sure to list the procedure to restore the system from a backup on
the cloud, which includes the following:

1. Understand which Amazon Machine Image (AMI) to use and build your own as
required with pre-installed software and security patches.

2. Document the steps to restore your system from a backup.

3. Document the steps to route traffic from the primary site to the new site in the
cloud.

4. Create a run book for deployment configuration and possible issues with their
resolutions.

[268]

Architectural Reliability Considerations Chapter 9

If the primary site located on-premises goes down, you need to start the recovery process.
As shown in the following diagram, in the preparation phase, create a custom Amazon
Machine Image (AMI), which is pre-configured with the operating system along with the
required software, and store it as a backup in Amazon S3. Store any other data such as
database snapshots, storage volume snapshots, and files in Amazon S3:

Availability zone

) Data copied from | f—]
e _ objectinbucket |

Buckst with objects

Amazon EBS
Data Volume

! Instance quickly
! Provisioned from AMI

(I Pre-bundled with OS
j:] and applications

Amazen Machine Image .
--- AWS Region

Restoring systems from Amazon S3 backups in the cloud

If the primary site goes down, you can retrieve backups from Amazon S3 and bring up the
required infrastructure. You can spin up Amazon EC2 server instances using golden
machine image and put it behind load balancer with Auto Scaling configuration as needed.
It would be a better approach to automate your infrastructure such as networking
deployment and bring it up by deploying the AWS CloudFormation template. Once your
servers are up and running, you need to restore data from backup. The last task is to switch
over traffic to the new system by adjusting DNS records to point to AWS.

This disaster recovery pattern is easy to set up and rather inexpensive. However, in this
scenario, both RPO and RTO will be high, RTO will be downtime until system gets restored
from backup and start functioning, while RPO will have an amount of data loss which
depends upon the backup frequency. Let's explore the next approach, pilot light, which
provides improvements in your RTOs and RPOs.

Pilot light

The pilot light is the next lowest cost DR method after backup and restore. As the name
suggests, you need to keep the minimum amount of core services up and running in a
different region. You can spin up additional resources quickly in the event of a disaster.

[269]

Architectural Reliability Considerations Chapter 9

You would probably actively replicate the database tier, then spin up instances from a VM
image or build out infrastructure using infra as code such as CloudFormation. Just like the
pilot in your gas heater, a tiny flame that is always on can quickly light up the entire
furnace to heat the house.

The following diagram shows a pilot light disaster recovery pattern. In this case, the database
is replicated into AWS, with Amazon EC2 instances of the web servers and application
servers ready to go, but currently not running:

User
On-Premise AWS Cloud
o ARRN -
3 . -
LA 9'
Web server Amazon Route 53 Web server ‘E
=
Hosted Zone . — - 2
»‘1".;::;3I server
App server -
Data mirroring / replication | K _A
> (=D
¥ |
Database server Database server

The pilot light data replication to DR site scenario

A pilot light scenario is pretty much similar to back up and restore, where you take the
backup of most of the components and store them passively. However, you maintain active
instances with a lower capacity for critical components such as a database or authentication
server, which can take a significant time to come up. You need to be prepared to start all
required resources automatically, which include network settings, load balancers, and
virtual machine images as required. As core pieces are already running, recovery time is
faster than the backup and restore method.

[270]

Architectural Reliability Considerations Chapter 9

The pilot light is very cost-effective as you are not running all of the resources 24/7. You
need to enable the replication of all critical data to the disaster recovery site—in this case,
the AWS cloud. You can use the AWS Data Migration Service to replicate data between on-
premise and cloud databases. For file-based data, you can use Amazon File Gateway. There
are many third-party managed tools available that provide data reapplication

solutions efficiently, such as Attunity, Quest, Syncsort, Alooma, and JumpMind.

Now, if the primary system fails, as shown in the following diagram, you start up the
Amazon EC2 instances with the latest copy of the data. Then, you redirect Amazon Route
53 to point to the new web server:

User

On-Premise

&

g

@

(']

Web @

Amazon Route 53 €D SEVer | 3

Hosted Zone §
App server

Data mirroring / replication ra2
I g/ rep > (@)
"4 bl

Database server
Resize to PROD
capacity

Database server

Recovery in the pilot light method

For the pilot light method, in the case of a disaster environment, you need to bring up the
resources around the replicated core dataset automatically and scale the system as required
to handle the current traffic. You can choose to vertically scale up the database instance and
scale out application servers with horizontal scaling using a load balancer. Finally, update
the DNS record in your router to point to the new site.

A pilot light disaster recovery pattern is relatively easy to set up and inexpensive.
However, in this scenario, the RTO takes a bit longer to automatically bring up a
replacement system, while the RPO largely depends on the replication type. Let's explore
the next approach, warm standby, which provides further improvements in your RTOs and
RPOs.

[271]

Architectural Reliability Considerations Chapter 9

Warm standby

Warm standby, also known as fully working low capacity standby, is like the next level of
the pilot light. It is the option where you use the agility of the cloud to provide low-cost DR.
It increases the cost but also allows data to recover more quickly by having a small subset
of services already running.

You can decide whether your disaster recovery environment should be enough to
accommodate 30% or 50% of production traffic. Alternatively, you can also use this for non-
production testing.

As shown in the following diagram, in the warm standby method, two systems are
running—the central system and a low-capacity system—on a cloud such as AWS. You can
use a router such as Amazon Route 53 to distribute requests between the central system
and the cloud system:

On-Premise

- {:::} |
Web server Amazon Route 53 Web server -
Hosted Zone g
o]
o
Appserver | B
App server Q
Data mirroring / replication Ra? =
! g/ rep - =D
"4 N
Database server Database
server

Warm standby scenario running an active-active workload with a low capacity

When it comes to a database, warm standby has a similar approach to pilot light, where
data is continuously replicating from the main site to the disaster recovery site. However, in
warm standby, you are running all necessary components 24/7; however, they do not scale
up for production traffic.

[272]

Architectural Reliability Considerations Chapter 9

Often, the organization chooses a warm standby strategy for more critical workloads, so
you need to make sure there are no issues in the disaster recovery site with continuous
testing. The best approach is to take the A/B testing approach, where major traffic will be
handled by the main site but a small amount of traffic, approximately 1% to 5%, is routed to
the disaster recovery site. It will make the disaster recovery site able to serve traffic when
the primary site is down. Also, make sure to patch and update software regularly in the
disaster recovery site.

As shown in the following diagram, during the unavailability of the primary environment,
your router switches over to the secondary system, which is designed to automatically scale
its capacity up in the event of a failover from the primary system:

User

T

On-Premise

@
-

Amazon Route 53 Web server g
Hosted Zone é
g
App server | =
L i KR_7
Data mirroring / replication
I g /rep > =D
¥ N

Database
server

Database server

Recovery phase in the warm standby scenario

In the event of a failure in the primary site, you can take a step approach, where an
immediate transfer of the critical production workload to the disaster recovery site, and
other non-critical workloads can be transferred later as you scale up your environment. For
example, in an e-commerce business, you first need to bring up your website, which is
customer-facing, and later you can bring up other systems such as warehouse management
and shipping, which is working in the background to fulfill the order.

[273]

Architectural Reliability Considerations Chapter 9

Your disaster recovery process becomes more efficient if your application is an all-in cloud,
where entire infrastructures and applications are hosted in the public cloud, such as AWS.
The AWS cloud allows you to use cloud-native tools efficiently; for example, you can
enable a multi-AZ failover feature in the Amazon RDS database to create a standby
instance in another availability zone with continuous replication. In the case of the primary
database, an instance goes down, an in-built automatic failover takes care of switching the
application to the standby database without any application configuration changes.
Similarly, you can use automatic backup and replication options for all kinds of data
protection.

A warm standby disaster recovery pattern is relatively complex to set up and expensive.
The RTO is much quicker than pilot light for critical workload, however for non-critical
workload it's depends upon how quickly you can scale up system, while the RPO largely
depends upon the replication type. Let's explore the next approach, multi-site, which
provides near-zero RTOs and RPOs.

Multi-site

Lastly, the multi-site strategy, also known as hot standby, helps you to achieve near-zero
RTO and RPO. In multi-site, your disaster recovery site is an exact replica of the primary
site with continuous data replication and traffic flow. It is known as multi-site architecture
due to the automated load balancing of traffic across regions or between on premise and
the cloud.

As shown in the following diagram, multi-site is the next level of disaster recovery to have
a fully functional system running in the cloud at the same time as on-premises systems:

User

T

Web server Amazon Route 53 Web server
Hosted Zone

On-Premise

I
&

Apedes (Ing

App server
App server

Data mi Jreplicat ra2
|_Data mirroring / replication | | <§>
¥ N

(o

Database
server

Database server

Multi-site scenario running an active-active workload with a full capacity

[274]

Architectural Reliability Considerations Chapter 9

The advantage of the multi-site approach is that it is ready to take a full production load at

any moment. It's similar to warm standby but running full capacity in the disaster recovery
site. If the primary site goes down, all traffic can be immediately failed over to the disaster

recovery site.

A multi-site disaster recovery pattern is most expensive as it requires a duplicate of
everything. However, in this scenario, the RTO objective is much quicker for all workloads,
while the RPO objective largely depends upon the replication type. Let's explore some best
practices around disaster recovery to make sure your system is running reliably.

Applying best practices for disaster recovery

As you start thinking about disaster recovery, here are some important considerations:

e Start small and build as needed: Make sure to streamline the first step of taking
a backup. Most of the time, organizations lose data as they didn't have an
efficient backup strategy. Take a backup of everything, whether it is your file
server, machine image, or databases.

Keeping lots of active backups could increase costs, so make sure to apply a
lifecycle policy to archive and delete data as per business needs. For example, you
can choose to keep a 90-day active backup and after that store that in low-cost
archive storage such as a tape drive or Amazon Glacier. After 1 or 2 years, you
may want to set a lifecycle policy to delete the data. Compliance such as PCI-DSS
may require users to store data for 7 years, and in that case, you must choose
archival data storage to reduce costs.

¢ Check your software licenses: Managing software licenses can be a daunting
task, especially in the current microservice architecture environment, where you
have several services running independently on their instances of virtual
machines and databases. Software licenses could be associated with several
installations, a number of CPUs, and several users. It becomes tricky when you
go for scaling. You need to have enough licenses to support your scaling needs.

Horizontal scaling needs to add more instances with software installed, and in
vertical scaling, you need to add more CPU or memory. You need to understand
your software licensing agreement and make sure you have the appropriate
license to fulfill system scaling. Also, you don't have to buy an excessive license,
which you may not be able to utilize and costs more money. Overall, make sure to
manage your license inventory like your infrastructure or software.

[275]

Architectural Reliability Considerations Chapter 9

¢ Test your solutions often: Disaster recovery sites are created for rare disaster
recovery events and are often overlooked. You need to make sure your disaster
recovery solution is working as expected in case of an event to achieve higher
reliability. Compromising a defined SLA can violate contractual obligations and
result in the loss of money and customer trust.

One way to test your solution often is by playing gameday. To play gameday, you
can choose a day when the production workload is smaller and gather all of the
team responsible for maintaining the production environment. You can simulate a
disaster event by bringing down a portion of the production environment and let
the team handle the situation to keep the environment up and running. These
events make sure you have working backups, snapshots, and machine images to
handle disaster events.

Always put a monitoring system in place to make sure automated failover to the disaster
recovery site takes place if an event occurs. Monitoring helps you to take a proactive
approach and improves system reliability by applying automation. Monitoring capacity
saves you resource saturation issues, which can impact your application's reliability.
Creating a disaster recovery plan and performing regular recovery validation helps to
achieve the desired application reliability.

Improving reliability with the cloud

In previous sections, you have seen examples of a cloud workload for the disaster recovery
site. Many organizations have started to choose the cloud for disaster recovery sites to
improve application reliability, as the cloud provides various building blocks. Also, cloud
providers such as AWS have a marketplace where you can purchase a variety of ready-to-
use solutions from providers.

The cloud provides data centers that are available across the geographic location at your
fingertips. You can choose to create a reliability site on another continent without any
hassle. With the cloud, you can easily create and track the availability of your
infrastructures such as backups and machine images.

In the cloud, easy monitoring and tracking help to make sure your application is highly
available as per the SLA. The cloud enables you to have fine control over IT resources, cost,
and handling trade-offs for RPO/RTO requirements. Data recovery is critical for application
reliability. Data resources and locations must align with RTOs and RPOs.

[276]

Architectural Reliability Considerations Chapter 9

The cloud provides easy and effective testing of your disaster recovery plan. You inherit
features available in the cloud, such as the logs and metrics mechanisms for various cloud
services. Built-in metrics are a powerful tool for gaining insight into the health of your
system. With all available monitoring capabilities, you can notify the team in case of any
threshold breach or trigger automation for system self-healing. For example, AWS provides
CloudWatch, which can collect logs and generate metrics while monitoring different
applications and infrastructure components. It can trigger various automation to scale your
application.

The cloud provides a built-in change management mechanism that helps to track
provisioned resources. Cloud providers extend out-of-the-box capabilities to ensure
applications and operating environments are running known software and can be patched
or replaced in a controlled manner. For example, AWS provides AWS System Manager,
which has the capability of patching and updating cloud servers in bulk. The cloud has
tools to back up data, applications, and operating environments to meet requirements for
RTOs and RPOs. Customers can leverage cloud support or a cloud partner for their
workload handling needs.

With the cloud, you can design a scalable system, which can provide flexibility to add and
remove resources automatically to match the current demand. Data is one of the essential
aspects of any application's reliability. The cloud provides out-of-the-box data backup and
replication tools, including machine images, databases, and files. In the event of a disaster,
all of your data is backed up and appropriately saved in the cloud, which helps the system
to recover quickly.

Regular interaction across the application development and operation team will help to
address and prevent known issues and design gaps, which will reduce the risk of failures
and outages. Always architect your applications to achieve resiliency and distribute them to
handle any outages. Distribution should span different physical locations to achieve high
levels of availability.

[277]

Architectural Reliability Considerations Chapter 9

Summary

In this chapter, you learned about various principles to make your system reliable. These
principles include making your system self-healing by applying rules of automation and to
reduce the impact in the event of failure by designing a distributed system where the
workload spans multiple resources.

Overall system reliability heavily depends on your system's availability and its ability to
recover from disaster events. You learned about synchronous and asynchronous data
replication types and how they affect your system reliability. You learned about various
data replication methods, including array-based, network-based, host-based, and
hypervisor-based. Each replication method has its pros and cons. There are multiple
vendors' products available to achieve the desired data replication.

You learned about various disaster planning methods as per the organization's needs and
the RTO and RPO. You learned about backup & restore method that has high RTO and
RPO, and it is easy to implement. Pilot light improves your RTO/RPO by keeping critical
resources such as a database active in the disaster recovery site. Warm standby and multi-
site maintain an active copy of a workload on a disaster recovery site and help to achieve a
better RTO/RPO. As you increase application reliability by lowering the system's
RTO/RTO, the system's complexity and cost increase. You learned about utilizing the
cloud's built-in capability to endure application reliability.

Solution design and launch may not happen too often, but operational maintenance is an
everyday task. In the next chapter, you will learn about the alert and monitoring aspects of
solution architecture. You will learn about various design principles and technology
choices to make your application operationally efficient and apply operational excellence.

[278]

10

Operational Excellence
Considerations

Application maintainability is one of the main aspects that a solution architect should
consider during architectural design. Every new project starts with lots of planning and
resources at the beginning. You may spend a few months creating and launching your
application but change frequency will get reduced as your application matures. After the
production launch, the application needs several things to be taken care of to keep
operating. You need to continually monitor your application to find and resolve any issues
on a day-to-day basis.

The operations team needs to handle application infrastructure, security, and any software
issues to make sure your application is running reliably without any problems or issues.
Often, an enterprise application is complex in nature, with a defined Service Level
Agreement (SLA) regarding application availability. Your operations team needs to
understand business requirements and prepare themself accordingly to respond to any
event.

Operation excellence should be implemented across various components and layers of
architecture. In modern microservice applications, there are so many moving parts
involved that this makes system operations and maintenance a complicated task. Your
operations team needs to put proper monitoring and alert mechanisms in place to tackle
any issues. Operational issues involve coordination from several teams for preparation and
resolution. Operation expenditures are one of the significant costs that an organization puts
aside to run a business.

Operational Excellence Considerations Chapter 10

In this chapter, you will learn various design principles applicable to achieve operational
excellence for your solution. The operational aspect needs to consider every component of
the architecture. You will get an understanding of the right selection of technologies to
ensure operational maintainability at every layer. You will learn the following best
practices of operational excellence in this chapter:

¢ Designing principles for operational excellence
e Selecting technologies for operational excellence
e Achieving operational excellence in the public cloud

By the end of this chapter, you will learn about various processes and methods to achieve
operational excellence. You will learn about best practices that you can apply throughout
application design, implementation, and post-production to improve application
operability.

Designing principles for operational
excellence

Operational excellence is about running your application with the minimal possible
interruption to gain maximum business value. It is about applying continuous
improvements to make the system efficient.

The following sections talk about the standard design principles that can help you
strengthen your system's maintainability. You will find that all operational excellence
design principles are closely related and complement each other.

Automating the operation

Technology has been moving fast in recent times, and so IT operations need to keep up
with that, where hardware and software inventories are procured from multiple vendors.
Enterprises are building a hybrid cloud, so you need to handle both on-premises and cloud
operations. All modern systems have a decidedly more extensive user base, with various
microservices working together and millions of devices connected in the network. There are
many moving parts in an IT operation, so this makes it difficult to run things manually.

[280]

Operational Excellence Considerations Chapter 10

Organizations maintain agility, and operations have to be faster to avail the required
infrastructure for new service development and deployment. The operations team has a
more significant responsibility to keep services up and to run and recover quickly in case of
an event. Now, it is required to take a proactive approach in IT operations, rather than
waiting for an incident to happen and then reacting.

Your operations team can work very efficiently by applying automation. Manual jobs need
to be automated so that the team can focus on more strategic initiatives rather than getting
overworked with tactical work. Spinning up a new server or starting and stopping services
should be automated by taking an infrastructure as code (IaC) approach. Automating
active discovery and response for any security threat is most important, to free up the
operations team. Automation allows the team to devote more time to innovation.

For your web-facing application, you can detect anomalies in advance before they impact
your system, using machine learning prediction. You can raise an automated security ticket
if someone exposes your server to the world with HTTP port 80. You can pretty much
automate the entire infrastructure and redeploy it multiple times as a one-click solution.
Automation also helps to avoid human error, which can occur even if a person is doing the
same job repetitively. Automation is now a must-have friend for IT operations.

Making incremental and reversible changes

Operational optimization is an ongoing process, whereby continuous effort is required to
identify the gap and improve upon it. Achieving operational excellence is a journey. There
are always changes required in all parts of your workload to maintain it—for example,
often, operating systems of your server need to be updated with the security patch
provided by your vendor. Various software that your application is using needs a version
upgrade. You need to make changes in the system to adhere to new compliance.

You should design your workload in such a way that it allows all system components to get
updated regularly, so the system will benefit from the latest and most significant updates
available. Automate your flow so that you can apply small changes to avoid any significant
impact. Any changes should be reversible, to restore system working conditions in the case
of any issue. Incremental changes help to do thorough testing and improve overall system
reliability. Automate any change management to avoid human error and achieve efficiency.

[281]

Operational Excellence Considerations Chapter 10

Predicting failures and responding

Preventing failures is vital to achieving operational excellence. Failures are bound to
happen, and it's more critical to identify them as far in advance as possible. During
architecture design, anticipate failure to make sure you design for failure so that nothing
will fail. Assume that everything will fail all the time and have a backup plan ready.
Perform regular pre-mortem exercises to identify any potential source of failure. Try to
remove or mitigate any resource that could cause a failure during system operation.

Create a test scenario based on your SLA that potentially includes a system Recovery Time
Objective (RTO) and Recovery Point Objective (RPO). Test your scenario, and make sure
you understand their impact. Make your team ready to respond to any incident by
simulating in a production-like scenario. Test your response procedure to make sure it is
resolving issues effectively and create a confident team that is familiar with response
execution.

Learning from the mistake and refining

As operational failures occur in your system, you should learn from the mistake and
identify the gap. Make sure those same events do not occur again, and you should have a
solution ready in case a failure gets repeated. One way to improve is by running root cause
analysis, also called RCA.

During RCA, you need to gather the team and ask five whys. With each why, you peel off
one layer of the problem, and, after asking subsequent why, you get to the bottom of the
issue. After identifying the actual cause, you can prepare a solution by removing or
mitigating the resources and update the operational runbook with the ready-to-use
solution.

As your workload evolves with time, you need to make sure the operation procedure gets
updated accordingly. Make sure to validate and test all methods regularly, and that the
team is familiar with the latest updates in order to execute them.

Keeping operation's runbook updated

Often, a team overlooks documentation, which results in an outdated runbook. A runbook
provides a guide to executing a set of actions in order to resolve issues arising due to
external or internal events. A lack of documentation can make your operation people-
dependent, which can be risky due to team attrition. Always establish processes to keep
your system operation people-independent, and document all the aspects.

[282]

Operational Excellence Considerations Chapter 10

Your runbook should include the defined SLA in the aspect of RTO/RPO, latency and
performance, and so on. The system admin should maintain a runbook with steps to start,
stop, patch, and update the system. The operations team should include the system testing
and validation result, along with the procedure to respond to the event.

In the runbook, you want to keep track of all previous events and actions taken by team
members to resolve them, so that any new team members can provide a quick resolution of
similar incidents during operation support. Automate your runbook through the script so
that it can get updated automatically as new changes roll out to the system.

Automate processes to annotate documents as a team applies changes to the system, and
also after every build. You can use annotation to automate your operation, and it is easily
readable by code. Business priorities and customer needs continue to change, and it's
essential to design operations to support evolution over time.

Selecting technologies for operational
excellence

The operations team needs to create procedures and steps to handle any operational
incidents and validate the effectiveness of their actions. They need to understand the
business need to provide efficient support. The operations team needs to collect systems
and business metrics to measure the achievement of business outcomes.

The operational procedure can be categorized into three phases—planning, functioning,
and improving. Let's explore technologies that can help in each phase.

Planning for operational excellence

The first step in the operational excellence process is to define operational priorities to focus
on the high business impact area. Those areas could be applying automation, streamlining
monitoring, developing team skills as workload evolves, and focusing on improving
overall workload performance. These are tools and services available that crawl through
your system by scanning logs and system activity. These tools provide a core set of checks
that recommend optimizations for the system environment and help to shape priorities.

[283]

Operational Excellence Considerations Chapter 10

After understating priorities, you need to design the operation, which includes the
understanding of workloads to design and building the procedures to support them. The
design of a workload should consist of how it will be implemented, deployed, updated,
and operated. An entire workload can be viewed as various application components,
infrastructure components, security, data governance, and operations automation.

While designing for an operation, consider the following best practice:

¢ Automate your runbook with scripting to reduce human error, which creates an
operating workload.

¢ Use resource identification mechanisms to execute operations based on defined
criteria such as environment, various versions, application owner, and roles.

e Make incident responses automated so that, in the case of an event, the system
should start self-healing without much human intervention.

e Use various tools and capabilities to automate the management of server
instances and overall systems.

¢ Create script procedures on your instances to automate the installation of
required software and security patches when the server gets started. These
scripts are also known as bootstrap scripts.

After the operation design, create a checklist for operational readiness. These checklists
should be comprehensive to make sure the system is ready for operation support when
going live in production. This includes logging and monitoring, a communication plan, an
alert mechanism, a team skillset, a team support charter, a vendor support mechanism, and
so on. For operational excellence planning, the following are the areas where you need
appropriate tools for preparation:

e IT Asset Management
¢ Configuration management

Let's explore each area in more detail, to understand the available tools and processes.

IT Asset Management (ITAM)

Operational excellence planning requires the list of IT inventories and tracks their use.
These inventories include infrastructure hardware such as physical servers, network
devices, storage, end-user devices, and so on. You also need to keep track of software
licenses, operational data, legal contracts, compliance, and so on. IT assets include any
system, hardware, or information that a company is using to perform a business activity.

[284]

Operational Excellence Considerations Chapter 10

Keeping track of IT assets helps an organization to make strategic and tactical decisions
regarding operational support and planning. However, managing IT assets in a large
organization could be a very daunting task. Various ITAM tools are available for the
operations team to help in the asset management process. Some of the most popular ITAM
tools are SolarWinds, Freshservice, ServiceDesk Plus, Asset Panda, PagerDuty, Jira
Service Desk, and so on.

IT management is more than tracking IT assets. It also involves monitoring and collecting
asset data continuously, to optimize usages and operation costs. ITAM makes the
organization more agile by the provided end-to-end visibility and the ability to apply
patches and upgrades quickly. The following diagram illustrates IT asset life cycle
management (ITALM):

Information Technology
Retire Procure

Asset management

Maintain <::| Integrate

ITALM process

As shown in the preceding diagram, the ITALM process includes the following phases:

e Plan: An asset life cycle starts with planning, which is a more strategic focus to
determine needs for overall IT assets and procurement methods. It includes cost-
benefit analysis and total cost of ownership.

[285]

Operational Excellence Considerations Chapter 10

e Procure: In the procurement phase, organizations acquire the asset based on the
outcome of planning. They may also decide to develop some holdings as
required—for example, in-house software for logging and monitoring.

e Integrate: In this phase, an asset is installed in the IT ecosystem. It includes
operation and support of the asset, and defines user access—for example,
installing a log agent to collect logs from all the servers in a centralized
dashboard, and restricting monitoring dashboard metrics to the IT operations
team.

¢ Maintain: In the maintenance phase, the IT operations team keeps track of assets,
and acts to upgrade or migrate based on the asset life cycle—for example,
applying a security patch provided by the software vendor. The other example is
keeping track of end of life for licensed software, such as a plan to migrate from
Windows 2008 to Windows 2016, as the old operating system is getting to the
end of its life.

e Retire: In the retirement phase, the operations team disposes of the end-of-life
asset. For example, if an old database server is getting to the end of its life, then
the team takes action to upgrade it and migrates the required user and support to
the new server.

ITAM helps organizations adhere to ISO 19770 compliance requirements. It includes
software procurement, deployment, upgrade, and support. ITAM provides better data
security and helps to improve software compliance. It provides better communication
between business units such as operation, finance, and marketing teams, and frontline staff.

Configuration management

Configuration management maintains configuration items (CI) to manage and deliver an
IT service. CIs are tracked in the Configuration Management Database (CMDB). The
CMDB stores and manages system component records with their attributes such as their
type, owner, version, and dependency with other components. The CMDB keeps track of
whether the server is physical or virtual, if the operating system is installed with its version
(Windows 2012 or Red Hat Enterprise Linux (RHEL) 7.0),the owner of the server (support,
marketing, or HR), and whether it has dependency on other servers such as order
management, and so on.

[286]

Operational Excellence Considerations Chapter 10

Configuration management is different from asset management. As you learned in the
previous section, asset management is much faster. It manages the entire life cycle of an
asset, from planning to retirement, while CMDB is a component of asset management that
stores configuration records of an individual asset. As shown in the following diagram,
configuration management implements the integration and maintenance part of asset
management:

Deployment

Configuration
IManagement

IT asset life cycle versus configuration management

Zooming in on configuration management, as shown in the preceding diagram,
configuration management implements the deployment, installation, and support part of
asset management. The configuration management tool can help the operations team to
reduce downtime by providing readily available information on asset configuration.

Implementing effective change management helps us to understand the impact of any
changes in the environment. The most popular configuration management tools are Chef,
Puppet, Ansible, Bamboo, and so on. You will learn more details about them in chapter 12,
DevOps and Solution Architecture Framework.

[287]

Operational Excellence Considerations Chapter 10

IT management becomes easier if your workload is in a public cloud such as Amazon Web
Services (AWS), Azure, or Google Cloud Platform (GCP). Cloud vendors provide inbuilt
tools to track and manage IT inventories and configuration in one place. For example, AWS
provides services such as AWS Config, which tracks all IT inventories that spin up as a part
of your AWS cloud workload, and services such as AWS Trusted Advisor, which
recommends cost, performance, and security, which you can use to decide to manage your
workload.

The enterprise creates a framework such as an Information Technology Infrastructure
Library (ITIL), which implements an Information Technology Service Management
(ITSM) best practice. An ITIL provides a view on how to implement ITSM.

In this section, you learned about asset management and configuration management, which
is part of the ITIL framework and more relevant to operational excellence. ITSM helps
organizations to run their IT operations daily. You can learn more about ITIL from its
governing body AXELOS by visiting their website (https://www.axelos.com/best-
practice-solutions/itil). AXELOS offers ITIL certification to develop skills in the IT
service management process. As you have learned about planning, let's explore the
functioning of IT operations in the next section.

The functioning of operational excellence

Operational excellence is determined by proactive monitoring and quickly responding, to
recover in the case of an event. By understanding the operational health of a workload, it is
possible to identify when events and responses impact it. Use tools that help understand
the operational health of the system using metrics and dashboards. You should send log
data to centralized storage and define metrics to establish a benchmark.

By defining and knowing what a workload is, it is possible to respond quickly and
accurately to operational issues. Use tools to automate responses to operational events
supporting various aspects of your workload. These tools allow you to

automate responses for operational events and initiate their execution in response to alerts.

[288]

https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil

Operational Excellence Considerations Chapter 10

Make your workload components replaceable, so that rather than fixing the issue you can
improve recovery time by replacing failed components with known good versions. Then,
analyze the failed resources without impacting a production environment. For the
functioning of operational excellence, the following are the areas where appropriate tools
are needed:

* Monitoring system health
¢ Handling alerts and incident response

Let's understand each area in more detail with information on the available tools and
processes.

Monitoring system health

Keeping track of system health is essential to understand workload behavior. The operations
team uses system health monitoring to record any anomalies in the system component, and
acts accordingly. Traditionally, monitoring is limited to the infrastructure layer keeping
track of the server's CPU and memory utilization. However, monitoring needs to be
applied to every layer of the architecture. The following are the significant components
where monitoring is applied.

Infrastructure monitoring

Infrastructure monitoring is essential and is the most popular form of monitoring.
Infrastructure includes components required for hosting applications. These are the core
services such as storage, servers, network traffic, load balancer, and so on. Infrastructure
monitoring may consist of metrics, such as the following:

e CPU usage: Percentage of CPU utilized by the server in a given period

e Memory usage: Percentage of random-access memory (RAM) utilized by the
server in a given period

e Network utilization: Network packet, in and out over the given period

e Disk utilization: Disk read/write throughput and input/output operations per
second (IOPS)

¢ Load balancer: Number of request counts in a given period

[289]

Operational Excellence Considerations Chapter 10

There are many more metrics available, and organizations need to customize those
monitoring metrics as per their application monitoring requirement. The following
screenshot shows a sample monitoring dashboard for network traffic:

Disk Write Bytes Average Disk Write Ops Average Network In Average
Various units ®cce Various units ®cc? Various units @2
1 service-catalog-e... 1 service-catalog-e... 605k service-catalog-e...
@ service-catalog-e... @ service-catalog-e... @ service-catalog-e...
@ -0104888f77134f... @ i-0104888f77134f... @ i-0104888f771341....
05 ® 1-09dfide21847de... 05 ® i-09dfide21847de... 303k ® 1-09difide21847S..
@ -0975437574987.... @ i-0975437574987.... @ i-0975437574987...
EC2 EC2 = EC2
0 0 621
09/24 10701 09/24 10/01 09/24 10/01
Network Out Average Network Packets In Average Network Packets Out Average
Various units ®cce Various units ®Ec? Various units ® 2

218k service-catalog-e... 972 L A service-catalog-e... 103K\ e e service-catalog-e...
@ service-catalog-e... @ service-catalog-e... @ service-catalog-e...
@ -0104888f77134f... @ i-0104888f77134f... @ i-0104888{771341....

[Y
430

108k @ i-09dfide21847d8... ® i-09dfide21847d8... 519 4 b A a4 L @ioodfide1847ds..
@ -0975437574987... @ i-0975437574987... @ -0975437574987...
EC2 _ EC2 EC2
685 7.48 8.18
09/24 10/01 09/24 10/01 09/24 10/01

Infrastructure monitoring dashboard

You can see the preceding system dashboard showing a spike in one day, with color-coding
applied for different servers. The operations team can dive deep in each graph and
resources to get a more granular view.

Application monitoring

Sometimes, your infrastructure is all healthy except applications having an issue due to
some bug in your code or any third-party software issues. You may have applied some
vendor-provided operating system security patch that messed up your application.
Application monitoring may include metrics, such as following;:

¢ Endpoint invocation: Number of request counts in a given period
* Response time: Average response time to fulfill the request

¢ Throttle: Number of valid requests spilled out as the system runs out of capacity
to handle the additional requests

e Error: Application throw an error while responding to a request

The following screenshot shows a sample application endpoint-monitoring dashboard:

[290]

Operational Excellence Considerations

Chapter 10

Invocations Sum
Count
61

31

L
08/04 08/11 08/18 08/25

cab-fulfill

@ book-trip-template

meme-python

lex-web-ui-Cognitoldentit-C...

here-we-go-again
mq

CABFinalDemo-Cognitolden...
CABbotUIDemo-CodeBuildD...

Duration Average
Miliseconds

33.2k
16.6k

54.7 8

08/04 08/11 08/ 08/25

cab-fulfill

® book-trip-template
meme-python
lex-web-ui-Cognitoldentit-C...
here-we-go-again
mg
CABFinalDemo-Cognitolden...
CABbotUIDemo-CodeBuildD...

Errors Sum Throttles Sum
Count Count -
5 cab-fulfill 1 @ CABFinalDemo-CodeBuildD...
@ book-trip-template @ CABFinalDemo-Cognitolden...
meme-python ® lex-web-ui-Pipeline-1Q2KMV..
25 lex-web-ui-Cegnitoldentit-C... 05 cab-fulfill
here-we-go-again @ book-trip-template
mq meme-python
0 . . CABFinalDemo-Cognitolden... [. lex-web-ui-Cognitoldentit-C...
08/04 08/11 08/18 08/25 CABbotUIDemo-CodeBuildD... 08/04 08/11 08/18 08/25 here-we-go-again

Application monitoring dashboard

There could be many more metrics based on application and technology—for example, a
memory garbage collection amount for a Java application, a number of HTTP POST and GET
requests for a RESTful service, a count of 4XX client errors, a count of 5XX server errors for
a web application, and so on.

Platform monitoring

Your application may be utilizing several third-party platforms and tools that need to be
monitored. These may include the following:

Memory caching: Redis and Memcached

Relational database: Oracle Database, Microsoft SQL Server, Amazon Relational
Database Service (RDS), PostgreSQL

NoSQL database: Amazon DynamoDB, Apache Cassandra, MongoDB

Big data platform: Apache Hadoop, Apache Spark, Apache Hive, Apache
Impala, Amazon Elastic MapReduce (EMR)

Containers: Docker, Kubernetes, OpenShift
Business intelligence tool: Tableau, MicroStrategy, Kibana, Amazon QuickSight

Messaging system: MQSeries, Java Message Service (JMS), RabbitMQ, Simple
Queue Service (SQS)

Search: Elasticsearch, Solr search-based application

[291]

Operational Excellence Considerations

Chapter 10

Each of the aforementioned tools has its own set of metrics that you need to monitor to
make sure your application is healthy as a whole. The following screenshot shows the
monitoring dashboard of a relational database platform:

Read Latency Average
Seconds
3e-4

08/01 09/01 10/01
@ dmsiabinstance @ lakedbinstance

Write Latency Average
Seconds
6e-3

1e-3 :
08/01 09/01 10/01
@ dmslabinstance @ lakedbinstance

Read Throughput Average
Bytes/Second
208

172

137
08/01 09/01 10/01
@ dmslabinstance @ lakedbinstance

Write Throughput Average
Bytes/Second

83.2k

73.4k

63.5k 2
08/01 09/01 10/01
@ dmslabinstance @ lakedbinstance

Read |OPS Average
‘Count/Second
0.346 ‘

0.293

0.233
08-07 09:05
- 01 10/01
@ dmsiab 2019-08-07 09:00 UTC
1. O lakedbinstance 0.233
Write IOPS Average
Count/Second

16

1.07 :
08/01 09/01 10/01

@ dmslabinstance @ lakedbinstance

Platform monitoring dashboard for a relational database management system (RDBMS)

In the preceding dashboard, you can see the database has lots of write activity, which is
showing that the application is continuously writing data. On the other hand, read events
are relatively consistent except for some spikes.

Log monitoring

Traditionally, log monitoring was a manual process, and organizations took a reactive
approach to analyze logs when issues were encountered. However, with more competition
and increasing expectations from users, it has become essential to take quick action before
the user notices the issue. For a proactive approach, you should have the ability to stream
logs in a centralized place and run queries to monitor and identify the issue.

[292]

Operational Excellence Considerations Chapter 10

For example, if some product page is throwing the error out, you need to know the error
immediately and fix the problem before the user complains, else you will suffer a revenue
loss. In the case of any network attack, you need to analyze your network log and block
suspicious IP addresses. Those IPs may be sending an erroneous number of data packets to
bring down your application. Monitoring systems such as AWS CloudWatch, Logstash,
Splunk, Google Stackdriver, and so on provide an agent to install in your application
server. The agent will stream logs to a centralized storage location. You can directly query
to central log storage and set up alerts for any anomalies.

The following screenshot shows a sample network log collected in a centralized place:

2019-02-05 20:08:14

2 789211807855 eni-0c7812c55522bd887 172.31.0.23 172.31.0.252 49232 1433 6 4@ 1860 1549397294 1549397893 ACCEPT 0K

N

789211807855 eni-0c6918ddd57f2978f 104.248.247.78 172.31.0.202 33794 8088 6 1 40 1549397503 1549397563 REJECT 0K

N

789211807855 eni-0c6918ddd57f2978f 78.128.112.98 172.31.0.202 58594 3393 6 1 40 1549397503 1549397563 REJECT OK

[a¥]

789211807855 eni-0c6918ddd57f2978f 172.104.121.206 172.31.0.202 38620 465 6 1 4@ 1549397503 1549397563 REJECT 0K

N

789211807855 eni-0c6918ddd57f2978f 193.32.160.35 172.31.0.202 48479 40004 6 1 4@ 1549397503 1549397563 REJECT OK

N

789211807855 eni-0c6918ddd57f2978f 172.31.0.202 172.31.0.23 46346 1433 6 20 1280 1549397503 15493981@3 ACCEPT 0K

N

789211807855 eni-0c6918ddd57f2978f 172.31.0.23 172.31.0.202 1433 46346 6 20 820 1549397503 1549398103 ACCEPT OK

[a¥]

789211807855 eni-0c6918ddd57f2978f 172.31.0.202 172.31.0.23 44622 1433 6 20 1280 1549397503 1549398103 ACCEPT 0K

Raw network log streamed in a centralized datastore

[293]

Operational Excellence Considerations Chapter 10

You can run a query in these logs and find out the top 10 source IP addresses with the
highest number of reject requests, as shown in the following screenshot:

filter action="REJECT" | stats count(*) as numRejections
by srcAddr | sort numRejections desc | limit 1@

Actions v Sample queries v Have

feedback? Email us.

Logs Visualization

1k
S
0
Sep 08 Sep 15 Sep 22 Sep 29
110,245 records matched | 110,268 records (15.2 MB) scanned in
6.1s @ 17,958 records/s (2.5 MB/s)

¢ srcAddr ! numRejections
1 80.82.78.104 2414
2 167.71.184.66 2223
3 185.176.27.170 1749
4 159.65.25.220 1556
5 104.199.19.160 1443
6 167.99.138.184 959
7 167.71.62.190 914
8 162.220.166.114 914
9 66.23.231.121 869
10 51.83.69.99 846

Insight from raw network log by running query

As shown in the preceding query editor, you can create a graph and put an alarm in, if the
number of rejections detected crosses a certain threshold, such as more than 5,000.

[294]

Operational Excellence Considerations Chapter 10

Security monitoring

Security is a critical aspect of any application. Security monitoring should be considered
during solution design. As you learned when we looked at security in the various
architectural components in chapter 8, Security Considerations, security needs to be applied
at all layers. You need to implement security monitoring to act and respond to any event.
The following significant components show where monitoring needs to be applied:

¢ Network security: Monitor any unauthorized port opening, suspicious IP
address, and activity.

e User access: Monitor any unauthorized user access and suspicious user activity.

¢ Application security: Monitor any malware or virus attack.

e Web security: Monitor a distributed denial-of-service (DDoS) attack, SQL
injection, or cross-site scripting (XSS).

e Server security: Monitor any gap in security patches.

¢ Compliance: Monitor any compliance lapses such as violations of payment card
industry (PCI) compliance checks for payment applications or the Health
Insurance Portability and Accountability Act (HIPAA) for healthcare
applications.

¢ Data security: Monitor unauthorized data access, data masking, and data
encryption at rest and in transit.

For monitoring, you can use various third-party tools such as Imperva, McAfee, Qualys,
Palo Alto Networks, Sophos, Splunk, Sumo Logic, Symantec, Turbot, and so on.

While you are putting application monitoring tools in place to monitor all components of
your system, it is essential to monitor the monitoring system. Make sure to monitor the host
of your monitoring system. For example, if you're hosting your monitoring tool in Amazon
Elastic Compute Cloud (EC2), then AWS CloudWatch can monitor the health of EC2.

Handling alerts and incident response

Monitoring is one part of operational excellence functioning; the other part involves
handing alerts and acting upon them. Using alerts, you can define the system threshold and
when you want to work. For example, if the server CPU utilization reaches 70% for 5
minutes, then the monitoring tool records high server utilization and sends an alert to the
operations team to take action to bring down CPU utilization before a system crash.
Responding to this incident, the operations team can add the server manually. When
automation is in place, autoscaling triggers the alert to add more servers as per demand. It
also sends a notification to the operations team, which can be addressed later.

[295]

Operational Excellence Considerations Chapter 10

Often, you need to define the alert category, and the operations team prepares for the
response as per the alert severity. The following levels of severity provide an example of
how to categorize alert priority:

o Severity 1: Sevl is a critical priority issue. A Sev1 issue should only be
raised when there is a significant customer impact, for which immediate human
intervention is needed. A Sev1 alert could be that the entire application is down.
The typical team needs to respond to these kinds of alerts within 15 minutes and
requires 24/7 support to fix the issue.

e Severity 2: Sev2 is a high-priority alert that should be addressed in business
hours. For example, the application is up, but the rating and review system is not
working for a specific product category. The typical team needs to respond to
these kinds of alerts within 24 hours and requires regular office hours' support to
fix the issue.

¢ Severity 3: Sev3 is a medium-priority alert that can be addressed during business
hours over days—for example, the server disk is going to fill up in 2 days. The
typical team needs to respond to these kinds of alerts within 72 hours and
requires regular office hours' support to fix the issue.

¢ Severity 4: Sev4 is a low-priority alert that can be addressed during business
hours over the week— for example, Secure Sockets Layer (SSL) certification is
going to expire in 2 weeks. The typical team needs to respond to these kinds of
alerts within the week and requires regular office hours' support to fix the issue.

¢ Severity 5: Sevb falls into the notification category, where no escalation needed,
and it can be simple information—for example, sending a notification that
deployment is complete. Here, no response is required in return since it is only
for information purposes.

Each organization can have different alert severity levels as per their application needs.
Some organizations may want to set four levels for severity, and others may go for six.
Also, alert response times may differ. Maybe some organization wants to address Sev2
alerts within 6 hours on a 24/7 basis, rather than waiting for them to be addressed during
office hours.

[296]

Operational Excellence Considerations Chapter 10

While setting up an alert, make sure the title and summary are descriptive and concise. Often,
an alert is sent to a mobile (as an SMS) or a pager (as a message) and needs to be short and
informative enough to take immediate action. Make sure to include proper metrics data in
the message body. In the message body, include information such as The disk is 90% full in
production-web-1 server rather than just saying The disk is full. The following screenshot
shows an example alarm dashboard:

Event Buses

© Add a dashboard

percentage-disk-space
-used-default-ahuOfzeh
5zgg

acityUnitsLimit-BasicAl

CloudWatch
Name v State Conditions
Dashboards
| Alarms BillingAlarm A In alarm Es?tlmatedCharges > 1000 for 1 datapoints
within 6 hours
ALARM o 2-i-0e9a414d66d
awsec2-i-0eda: .
INSUFFICIENT @) 607 ce-High-Status-C dats StatusCheckFailed_System >= 1 for 2
. datapoints within 2 minutes
OK o heck-Failed-System-
Billing percentage-disk-space i B
-used-default-5zsqmidl @ Insufficient data ZercenfageDfer:Space?Used >=70 for 1
Events Bwfd atapoints within 5 minutes
Rules

PercentageDiskSpaceUsed >= 70 for 1
datapoints within 5 minutes

Logs
g_ myrds ® Insufficient data CPUCreditBalance >= 1 for 1 datapoints within

Insights Y W T e 5 minutes

Metrics Rides-ReadCapacityUn ConsumedReadCapacityUnits >= 240 for 5
e . ® OK) s)
Alpine itsLimit-BasicAlarm datapoints within 5 minutes
. Rides-WriteCapacityUni ConsumedWriteCapacityUnits >= 240 for 5

Settings tsLimit-BasicAlarm QoK datapoints within 5 minutes
Favorites SumerianConciergeExp

avories erienceUsers-ReadCap @ 0K ConsumedReadCapacityUnits >= 240 for 5

datapoints within 5 minutes

Alarm dashboard

As shown in the preceding alarm dashboard, there is one alarm in progress where my
billing charges went above 1,000 USD. The bottom three alarms have an OK status as data
is collected during monitoring that is well within the threshold. Four alarms are showing
Insufficient data, which means there are not enough data points to determine the state of
resources you are monitoring. You should only consider this alarm good if it can collect
data and move into the OK state.

Testing of incident response in the case of critical alerts is important to make sure you are
ready to respond as per the defined SLA. Make sure your threshold is set up correctly so
that you have enough room to address the issue, and, also, don't send too many alerts.
Make sure that as soon as the issue resolved, your alert gets reset to the original setting and
is ready to capture event data again.

[297]

Operational Excellence Considerations Chapter 10

An incident is any unplanned disruption that impacts the system and customer negatively.
The first response during an incident is to recover the system and restore the customer
experience. Fixing the issue can be addressed later as the system gets restored and starts
functioning. The automated alert helps to discover the incident actively and minimizes user
impact. This can act as a failover to a disaster recovery site if the entire system is down, and
the primary system can be fixed and restored later. For example, Netflix uses the Simian
Army (https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116), which
has Chaos Monkey to test system reliability. Chaos Monkey orchestrates random
termination of a production server to test if the system can respond to disaster events
without any impact on end users. Similarly, Netflix has other monkeys to test various
dimensions of system architecture, such as Security Monkey, Latency Monkey, and

even Chaos Gorilla, which can simulate outage of the entire availability zone.

Monitoring and alerts are critical components to achieving operational excellence. All
monitoring systems typically have an alert feature integrated with them. A fully automated
alert and monitoring system improves the operations team's ability to maintain the health
of the system, provide expertise to take quick action, and excel in the user experience.

Improving operational excellence

Continuous improvement is required for any process, product, or application to excel.
Operational excellence needs continuous improvement to attain maturity over time. You
should keep implementing small incremental changes as you perform RCA and learn a
lesson from various operations' activities.

Learning from failure will help you to anticipate any operational event that may be planned
(such as deployments) or unplanned (such as utilization surge). You should record all
lessons learned and update remedies in your operation runbook. For operational
improvement, the following are the areas where you need appropriate tools:

o IT Operation Analytics (ITOA)
¢ Root cause analysis (RCA)
¢ Auditing and reporting

[298]

https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116

Operational Excellence Considerations Chapter 10

ITOA

ITOA is the practice of gathering data from various resources to make a decision and
predict any potential issue that you may encounter. It's essential to analyze all events and
operational activities in order to improve. Analyzing failures will help to predict any future
event and keep the team ready to provide the appropriate response. Implement a
mechanism to collect the logs of operations events, various activities across workloads, and
infrastructure changes. You should create a detailed activity trail and maintain an activity
history for audit purposes.

A large organization could have hundreds of systems generating a massive amount of data.
You need a mechanism to ingest and store all logs and event data for a length of time, such
as 90 or 180 days, to get insight. ITOA uses big data architecture to store and analyze
multiple terabytes of data from all over the place. ITOA helps to discover any issue that you
could not find by looking at individual tools and helps to determine dependencies between
various systems, providing a holistic view.

As shown in the following diagram, each system has its own monitoring tool that helps to
get insights and maintains individual system components. For operation analytics, you
need to ingest this data in a centralized place. All operation data collection in one place
gives a single source of truth, where you can query required data and run analytics to get a
meaningful insight:

Infrastructure Monitoring
e T i
; -

Application Monitoring —_ o(;

m T |
>
- D
o
Network Monitering o—> \
5 7
=1

7

/ Index and Store Using Analysis _al_ndt\fisua\ized
ex

Log Monitoring Search Database

ot

Database Monitoring

Big data approach for ITOA

[299]

Operational Excellence Considerations Chapter 10

To create an operation analytics system, you can use scalable big data storage such

as Amazon Simple Storage Service (S3). You can also store data in an on-premises Hadoop
cluster. For data extraction, the agent can be installed in each server, which can send all
monitoring data to a centralized storage system. You can use the Amazon CloudWatch
agent to collect data from each server and store it in S3. Third-party tools such as ExtraHop
and Splunk can help to extract data from various systems.

Once data is collected in centralized storage, you can perform a transformation to make
data ready for search and analysis. Data transformation and cleaning can be achieved using
a big data application such as Spark, MapReduce, AWS Glue, and so on. To visualize the
data, you can use any business intelligence tool such as Tableau, MicroStrategy, Amazon
QuickSight, and so on. Here, we are talking to about building an extract, transform, and
load (ETL) pipeline. You will learn more details in chapter 13, Data Engineering and
Machine Learning. You can further perform machine learning to do predictive analysis on a
future event.

RCA

For continuous improvement, it is essential to prevent any error happening again. If you
can identify problems correctly, then an efficient solution can be developed and applied. It's
important to get to the root cause of the problem to fix the problem. Five whys is a simple,
yet most effective, technique to identify the root cause of a problem.

In the five whys technique, you gather the team for a retrospective look at an event and ask
five consecutive questions to identify actual issues. Take an example where data is not
showing up in your application monitoring dashboard. You will ask five whys to get to the
root cause.

Problem: Application dashboard not showing any data.

Why: Because the application is unable to connect with the database.
Why: Because the application is getting a database connectivity error.
Why: Because the network firewall is not configured to the database port.

Ll e

Why: Because the configuring port is a manual check and infrastructure team
missed that.

5. Why: Because the team don't have the skills and tools for automation.

[300]

Operational Excellence Considerations Chapter 10

Root Cause: Manual configuration error during infrastructure creation.
Solution: Implement a tool for automated infrastructure creation.

In the preceding example, a first-instance issue looks like it is related to the application.
After the five whys analysis, it turns out to be a bigger problem and there is a need to
introduce automation to prevent similar incidents. RCA helps the team to document
lessons learned and continuously build upon it for operational excellence. Make sure to
update and maintain your runbook-like code and share best practices across the team.

Auditing and reporting

An audit is one of the essential activities to create recommendations and identify any
malicious activity in the system by internal or external interference. An audit becomes
especially important if your application needs to be compliant as per regulatory body
requirements—for example, PCI, HIPPA, Federal Risk and Authorization Management
Program (FedRAMP), International Organization for Standardization (ISO), and so on.
Most of the compliant regulatory bodies need to conduct regular audits and verify each
activity going into the system to prepare a compliance report and grant a certificate.

An audit is essential to prevent and detect security events. A hacker may silently get into
your system and systematically steal information without anyone noticing. Regular security
audits can uncover a hidden threat. You may want to conduct a regular audit for cost
optimization to identify if resources are running idle when not required. Also, determine
resource demand and available capacity so that you can plan.

In addition to alert and monitoring, the operations team is also responsible for saving the
system from any threat by enabling and conducting the audit. An IT audit makes sure you
safeguard IT assets and license protection and that you ensure data integrity and operations
adequately to achieve your organizational goal.

Auditing steps include planning, preparing, evaluation, and reporting. Any risk item needs
to be highlighted in the report, and follow-ups will be conducted to address open issues.
For operational excellence, the team can perform internal audit checks to make sure all
systems are healthy and that proper alerts are in place to detect any incidents.

[301]

Operational Excellence Considerations Chapter 10

Achieving operational excellence in the
public cloud

A public cloud provider such as AWS, GCP, and Azure provides many inbuilt capabilities
and guidance to achieve operational excellence in the cloud. Cloud providers advocate
automation, which is one of the most essential factors for operational excellence. Taking the
example of the AWS cloud, the following services can help to achieve operational
excellence:

¢ Planning: Operational excellence planning includes identification of gaps and
recommendation, automating via scripting, and managing your fleet of servers
for patching and updates. The following AWS services help you in the planning
phase:

e AWS Trusted Advisor: AWS Trusted Advisor checks your
workload based on prebuilt best practice and provides
recommendations to implement them.

¢ AWS CloudFormation: With AWS CloudFormation, the entire
workload can be viewed as code, including applications,
infrastructure, policy, governance, and operations.

¢ AWS Systems Manager: AWS Systems Manager provides the
ability to manage cloud servers in bulk for patching, update, and
overall maintenance.

¢ Functioning: Once you have created operational excellence best practice and
applied automation, you need continuous monitoring of your system to be able
to respond to an event. The following AWS services help you in system
monitoring, alerts, and automated response:
¢ Amazon CloudWatch: CloudWatch provides hundreds of inbuilt
metrics to monitor workload operation and trigger alerts as per the
defined threshold. It provides a central log management system
and triggers an automated incident response.

e AWS Lambda: The AWS service used to automate responses to
operational events is AWS Lambda.

[302]

Operational Excellence Considerations Chapter 10

¢ Improving: As incidents come into your system, you need to identify their
pattern and root cause for continuous improvement. You should apply the best
practice to maintain the version of your scripts. The following AWS services will
help you to identify and apply system improvements:
¢ Amazon Elasticsearch: Elasticsearch helps to learn from
experience. Use Elasticsearch to analyze log data to gain insight
and use analytics to learn from experience.

e AWS CodeCommit: Share learning with libraries, scripts, and
documentation by maintaining them in the central repository as a
code.

AWS provides various capabilities to run your workload and operations as code. These
capabilities help you to automate operations and incident response. With AWS, you can
easily replace failed components with a good version and analyze the failed resources
without impacting the production environment.

On AWS, aggregate the logs of all system operation and workload activities, and
infrastructure, to create an activity history, such as AWS CloudTrail. You can use AWS
tools to query and analyze operations over time and identify a gap for improvement. In the
cloud, resource discovery is easy, as all assets are located under the API- and web-based
interfaces within the same hierarchy. You can also monitor your on-premises workload
from the cloud.

Operational excellence is a continuous effort. Every operational failure should be analyzed
to improve the operations of your application. By understanding the needs of your
application load, documenting regular activities as a runbook, and following steps to guide
issue handling, using automation, and creating awareness, your operations will be ready to
deal with any failure event.

Summary

Operational excellence can be achieved by working on continuous improvement as per
operational needs, and lessons learned from past events using RCA. You can achieve
business success by increasing the excellence of your operations. Build and operate
applications that increase efficiency while building highly responsive deployments. Use
best practices to make your workloads operationally excellent.

[303]

Operational Excellence Considerations Chapter 10

In this chapter, you learned about the design principles to achieve operational excellence.
These principles advocate operation automation, continuous improvement, taking an
incremental approach, predicting failure, and being ready to respond. You learned about
various phases of operational excellence and corresponding to technology choices. In the
planning phase, you learned about IT asset management to track the inventory of IT
resources and identify dependencies between them using configuration management.

You learned about alerts and monitoring in the functioning phase of operational excellence.
You got an idea about various kinds of monitoring, with examples such as infrastructure,
application, log, security, and platform monitoring. You learned about the importance of
alerts, and how to define alert severity and respond to it.

During the improvement phase of operational excellence, you learned about analytics in IT
operations by building a big data pipeline, methods to perform RCA using the five whys,
and the importance of auditing to save the system from any malicious behaviors and
unnoticed threats. You learned about operational excellence in the cloud and different
inbuilt tools that can be utilized for operational excellence in the AWS cloud.

As of now, you have learned best practices in the areas of performance, security, reliability,
and operational excellence. In the next chapter, you will learn about best practices for cost
optimization. You will also learn about various tools and techniques to optimize overall
system costs and how to leverage multiple tools in the cloud to manage IT expenditure.

[304]

11

Cost Considerations

One of the primary goals of any business is to increase profitability while serving its
customers. Cost is the key parameter of discussion when a project is initiated. Having an
application upgrade and adding new product features heavily depends upon the amount of
funding it can get. The product's cost is everyone's responsibility and needs to be
considered in every phase of the product life cycle (from planning to post-production). This
chapter will help you understand the best practices for optimizing costs for your IT
solutions and operations.

Cost optimization is a continuous process and needs to be managed carefully without
sacrificing customer experience. Cost optimization doesn 't mean cost reduction but rather
reducing the business risk by maximizing return on investment (ROI). You will need to
understand your customer needs before planning any cost optimization and act
accordingly. Often, if customers are looking for quality, they are ready to pay a higher
price.

In this chapter, you will learn various design principles for the cost optimization of your
solution. The cost aspect needs to be considered at every phase and component of the
architecture. You will get an understanding of the right selection of technology to ensure
cost optimization at every layer. You will learn the following best practices of cost
optimization in this chapter:

¢ Design principles for cost optimization
e Techniques for cost optimization
¢ Cost optimization in the public cloud

By the end of the chapter, you will have learned about various techniques to optimize cost
without risking business agility and outcome. You will have learned various methods to
monitor the cost and apply governance for cost control.

Cost Considerations Chapter 11

Design principles for cost optimization

Cost optimization includes the ability to increase business value and minimize risk while
reducing the cost of running a business. You need to plan by estimating budget and
forecasting expenditure. To realize cost gain, you need to implement a cost-saving plan and
closely monitor your expenditure.

You can follow several principles that help you achieve cost optimization. The following
sections talk about the common design principles that help you to optimize cost. You will
find that all cost optimization design principles are closely related and complement each
other.

Calculating the total cost of ownership

Often, organizations tend to overlook the total cost of ownership (TCO) and take decisions
based on the upfront cost to acquire software and services, known as capital

expenditure (CapEx). While the upfront cost determination is essential, in the long run, the
TCO matters the most. The TCO includes both CapEx and operational expenditure (OpEx),
covering all the dimensions of the application life cycle. The CapEx cost includes the price
organizations pay upfront to acquire services and software, while OpEx includes the cost of
operation, maintenance, training, and retirement of software application. You should
consider all associated costs to help to make more strategic decisions while calculating your
ROl in the long run.

For example, when you buy a refrigerator, which is going to run 24/7, you look for an
energy-saving rating to keep your electricity bill low. You are ready to pay a higher price
upfront as you know the total cost over time will be low due to the saving in the energy bill.

Now let's take an example of a data center. There is an upfront hardware acquisition cost
involved, the CapEx. However, the data center setup requires additional ongoing costs,

the OpEx, which includes heating, cooling, rack maintenance, infrastructure administration,
security, and so on.

For a typical use case, when you are purchasing and implementing software, consider the
following costs to calculate the TCO:

[306]

Cost Considerations Chapter 11

Total Cost of
Ownership

Human Resource
and Training cos

Purchase and Operational and
setup cost maintenance cost

TCO for software

Let's look at this at a more granular level. Each TCO component has the following common
costs involved for off-the-shelf software such as Oracle or MS SQL database:

¢ Purchase and setup costs: These are the upfront cost to acquiring the software
and the services to deploy software. This includes the following:
¢ Software price includes software with user licenses

e Hardware cost includes purchasing a server and storage to deploy
software

e Implantation cost includes the time and effort to get it ready for
production

e Migration cost includes moving data to the new system

¢ Operational and maintenance costs: This continues the cost of service to keep
the software running for the business use case. This cost includes the following:
¢ Software maintenance and support

¢ Patching and update

¢ Enhancement

¢ Data center cost to maintain hardware server
e Security

¢ Human resources and training costs: This is the overhead cost to train staff so
that they can use the software to address business activities. This cost includes
the following:
¢ Application admin staff

e IT support staff
e Functional and technical consultant
e Training cost and training tools

[307]

Cost Considerations Chapter 11

When looking for a solution, you will have multiple choices (such as taking out a
subscription for a software as a service (SaaS) product such as Salesforce CRM). The SaaS
model is mostly subscription-based, so you need to determine whether you are getting the
desired ROI for a more significant number of uses. You can take a hybrid approach and use
the cloud to handle your hardware by choosing the Infrastructure as a Service (IaaS)
option and installing off-the-shelf software. Overall, if the available software doesn't meet
your requirements, you can choose to build it by yourself. In any scenario, you should
calculate the TCO to make a decision where you can make the maximum ROI. Let's look at
budget and forecast planning, which can help to control TCO and achieve ROL

Planning the budget and forecast

Every business needs to plan its expenditure and calculate ROI. Planning the budget gives
guidance to organizations and teams on cost control. Organizations plan a long-term
budget, for 1-5 years, which helps them to run the business based on the funding required.
These budgets then come down to the individual project and application levels. During
solution design and development, the team needs to consider the available budget and plan
accordingly. The budget helps to quantify what the business wants to achieve. The forecast
provides an estimate of what the company is making.

You can consider budget planning as important strategic planning in the long run, and the
forecast provides an estimate at a more tactical level to decide the business direction. In
application development and operation, you can quickly lose track of the budget and
overrun costs in the absence of a budget and a forecast. These two terms may be confusing,
so let's understand the clear difference between a budget and a forecast:

Budget Forecast

Represents future result and cash flow for business objectives that

you want to achieve Represents revenue and current situation of the business

Plans for the long term, for example 1-5 years Plans month to month or quarterly

Is adjusted less frequently, maybe once in a year, based on business |Is updated more regularly based on actual business
drivers progress

Helps to decide business directions such as organization Helps to adjust short-term operational costs such as
restructuring based on actual cost versus budgeted cost additional staffing

Helps to determine performance by comparing planned cost versus |Isn't used for performance variation but for streamlining
actual cost progress

Forecast information helps you to take immediate action, while the budget may become
unachievable due to changes in the market. As shown in the following diagram, while you
are working on day-to-day solutions, developments based on historic expenditure forecasts
can prompt you to adjust the next month's cost:

[308]

Cost Considerations Chapter 11

$4K $3.95K
$3K $2.93K
$2.69K
$2K
$1K
$0
Last Month Month-to-Date Forecast
(September 2019) (October 2019) (October 2019)

Billing and forecast report

In the preceding billing and forecast report, your monthly budget is $3,000 and the forecast
is showing that, by the end of the month, you will overrun your budget. Here, the forecast
helps you act and control cost to stay within budget. Let's look at the mechanism to
improve cost-efficiency by managing demand and service in the next section.

Managing demand and service catalogs

Almost every organization has a centralized IT team, which works with internal business
partners such as the application development team and support team of various business
units. The IT team manages the demand for IT infrastructure, which includes the cost of all
software, hardware, and support to manage application hosting. Often, business partners
lack understanding of the cost drivers for the IT services that they use. For example,
application development tends to overprovision their development or test environment,
causing an additional cost.

Other factors that get the right sizing and demand forecasting from various organization
units can help to match supply and demand. By consolidating all requirements in one
place, an organization can benefit from economies of scale. You may achieve a lower
variable cost because a large contract can achieve higher economies of scale. The right
demand from all organization units is aggregated, which translates into lower prices.

[309]

Cost Considerations Chapter 11

Organizations can take one of the following two approaches to manage demand and
service:

¢ Demand management: To save costs in your existing IT environments (where
you may observe overspending may be prevalent), you can take the demand-led
approach. It helps to improve cost efficiency in the short term, as you are not
introducing many new services. You can analyze historical data to understand
factors that are driving demand and capture cases of overprovisioning. You
should establish a process between the IT team and business partners to
streamline operational costs for IT services.

¢ Service catalog management: If there is a demand for new services and you
don't have much historical data, then you can take the service-led approach. In this
approach, you need to understand the demand for the most frequently used
services and create a catalog for that. For example, if the development team is
asking for a Linux server with a MySQL database to create a dev environment,
the IT team can create a service catalog which helps the dev team to acquire a
small instance of Linux and a database server. Similarly, the IT team can identify
the most common set of services and attach a granular cost to that.

Each approach can have a significant cost saving in the short and long term. However,
these transformations present significant challenges as you need to change the project
planning and approval process. The business and finance team need to align and
understand the clear relationship between business growth and an increase in IT capacity.
The cost model needs to be built around the most efficient approach by combining offerings
from the cloud, on-premises, and off-the-shelf.

Keeping track of expenditure

By tracking expenditure, you can find individual system costs and tag them to the system
or business owner. Transparent expenditure data helps to identify ROI and reward owners,
those able to optimize resources and reduce cost. It can help you to determine what it is
costing every month for a department or project.

Saving cost is a shared responsibility and you need to have a mechanism to hold everyone
accountable for cost-saving. Often, organizations introduce a show-back or charge-back
mechanism to share cost responsibility between organizational units.

[310]

Cost Considerations Chapter 11

In the show-back approach, the centralized billing account informs each organization unit
regarding their expenditure but doesn't charge the actual amount. In the charge-back
mechanism, each business unit within an organization manages its own budget under a
master payee account. The master account charges back the amount to the business units as
per their IT resource consumption on a monthly basis.

When you are starting cost control for your organization, it is better to start with show-back
as a stepping stone and move to charge-back as the organizational model matures. For each
business unit, you should create expenditure awareness by configuring notifications, so
that teams get an alert as they approach the forecasted or budgeted amount of
consumption. You should create a mechanism to monitor and control your cost by
appropriately assigning them to the right business initiative. Provide visibility to create
accountability for cost expenditures for each team. Cost tracking will help you to
understand team operations.

Each workload is different; you should use the pricing model that suits your workload to
minimize cost. Establish mechanisms that ensure business objectives are achieved by
applying cost optimization best practice. You can avoid overspending by defining a tagging
strategy and applying the check-and-balance approach.

Continuous cost optimization

If you follow cost optimization best practices, you should have a good cost comparison
with existing activity. It's always possible to reduce the cost of your applications that are
migrated and matured over time. Cost optimizations should never end until the cost of
identifying money-saving opportunities is more than the amount of money you are going
to save. Until that point is reached, you should continually monitor your expenditure and
look for new ways to save on cost. You should keep finding an area to save costs by
removing idle resources.

For an architecture that is balanced in terms of its cost and performance, ensure that the
cost paid for resources is well utilized and avoids any significantly underutilized IT
resources such as server instances. A biased utilization metric showing exceptionally high
or low cost will have an adverse impact on your organization’s business.

[311]

Cost Considerations Chapter 11

Application-level metrics for cost optimization need to be considered carefully. For
example, introduce archival policies to control data storage capacity. To optimize the
database, you should check for appropriate database deployment needs, such as if multi-
location deployments for the database are really necessary or whether provisioned
Input/Output Operations Per Second (IOPS) are applicable as per your database
utilization needs. To reduce your administrative and operational overhead, you can use

the SaaS model; it will help your employees to focus on applications and business activities.

To identify a gap and apply necessary changes for cost-saving, you should implement
resource management and change control processes during the project life cycle. Your goal
is to help your organization design the architecture as optimally and cost-effectively as
possible. Keep looking for new services and features that might directly reduce your costs.

Techniques for cost optimization

To gain a competitive edge and keep up with rapid growth, enterprises are investing more
in technology. With economic instability, cost optimization becomes an essential but
challenging task. These companies spend a lot of time and research to reduce costs in the
procurement process, operation, and vendors. Many companies even share data centers,
call centers, and workspaces as a cost-saving method. Sometimes organizations delay
upgrades to avoid buying new expensive hardware.

The organization can save more if it takes a broader look into the overall information
technology architecture across its business units. Improving existing architecture can open
doors to bring more opportunities and business to the company even if it requires a bit
more adjustment in the budget. Let's identify the focus area where companies can save cost
and gain opportunities to bring more revenue with techniques such as moving to the cloud,
simplified architecture, virtualization, and shared resources.

Reducing architectural complexity

Organizations often lack a centralized IT architecture, resulting in each business unit trying
to build its own set of tools. Lack of overall control causes a lot of duplicate systems and
data inconsistency. IT initiatives in individual business units are driven by a short-term
goal and are not well aligned with long-term organizational vision such as the digital
transformation of the entire organization. Further, it adds complexity to maintain and
upgrade those systems. Taking a simple step to define set standards and avoid duplication
can help to save costs.

[312]

Cost Considerations Chapter 11

In the following diagram, you can see a complex architecture on the left-hand side, where
business units are working in their own application without any standardization, which is
causing duplicate applications with a lot of dependencies. This kind of architecture results
in higher cost and risk. Any new experiment takes a long time to market, which results in
losing the competitive edge. A standard process can provide a holistic view and high
flexibility to create an agile environment by applying automation, which helps to reduce
the overall cost and results in a more significant ROI:

~ DR Blnalaala
v : A A A
1 [1]
' I 1 1 ' '
\d
FrontEnd . A4 _
: Front End m m
1
[k L : A .
| [P \ . 1 1 ' '
| 1 i
! |+ Monolithic Web {t} {j}
Redundant ' Application Server
A TS : - : A A
I B n

' ' A A A A

A4 ¥ ¥ ¥
Database Database E@g E@g E@g
ENw— LWm—] LEAm—] IAm——s]

Architectural standardization

T
4
T
1

[RN I ——

Backend

To reduce the architectural complexity, the first thing is to eliminate duplication and
identify the function reuse across the business unit. During gap analysis of existing
architecture, you will find there is so much code, so many existing components, and a
project that can be reused again across the organization to support your business
requirement. To reduce the complexity of IT architecture, think of an out-of-the-box
solution that fits your business needs and provides an ROl Customization should be your
last approach if no other option is available.

Any new application needs to have a more accessible integration mechanism to interact
with the existing system using service-oriented architecture (SOA). Harmonizing the user
interface design across the application provides a set of standard UI packages, which can be
reused for any new application. Similarly, other modules can be reutilized with service-
oriented design. You learned about SOA patterns in chapter 6, Solution Architecture Design
Patterns, which help you keep all the different pieces of software working separately and
still communicating with each other to build a full system.

[313]

Cost Considerations Chapter 11

In the modular approach, each team gets the responsibility of developing a service, which
every team across the organization can use to avoid duplication. As an architect, you
should help the team to create a service-oriented design, where each team handles
individual architecture components as a service that can be developed independently. With
the help of microservices architecture, you can deploy an entire application in a modular
way, and if one component is not working, you can rework it without impacting the whole
application. For example, a payment service developed to collect payment from a customer
visiting an e-commerce website can be used to make payments to vendors in the vendor
management system.

Once you set up a centralized IT architecture, taking a modular approach helps you to keep
the cost down. Empowering your IT architecture team can help to align organizational
units with the company's vision and support other parallel projects to follow the overall
strategy. It also helps to provide consistency in other critical services that are often
overlooked, such as legal, accounting, and human resources.

With the help of the IT architecture team, you can get excellent feedback and make sure
that projects are aligned with business needs and requirements. By overseeing the overall
architecture across teams, an architect can advise if whether there is any duplicate effort,
project, process, or system that is not aligned with the business need. The centralized
architecture will reduce complexity and tech debt, bring more stability, and increase
quality. The overall idea of centralized architecture is to increase IT efficiency, so let's learn
more about that.

Increasing IT efficiency

Nowadays, every company is using and consuming IT resources. There is too much cost
used by too many servers, laptops, storage capacity, and the software license. The license is
one of the resources that is sometimes underused, undiscovered, idle, or installed
incorrectly, and consumes a lot of funding. A centralized IT team can lead the effort for
license optimization by keeping track of used software licenses and retiring additional
licenses. They can save costs by negotiating a bulk discount with the vendor.

To increase IT efficiency, you may want to cancel non-compliant projects that take
additional funding and resources. Also, you should help teams to revisit the strategy to
continuous support or terminate any unused and non-aligned projects. The following
methods can be considered for cost optimization:

¢ Reevaluate project having high spending but may not be well aligned with the
business vision. Reshape projects have high values but not direct reports to IT
strategy.

[314]

Cost Considerations Chapter 11

e De-prioritize projects that have little to no business value even though they are
aligned with IT strategy.

¢ Cancel non-compliant projects with low business values.
¢ Decommission or retire unused applications.

¢ Replace old legacy systems by modernizing them to reduce high maintenance
costs.

¢ Avoid duplicate projects by reutilizing existing applications.

e Wherever possible, consolidate data and develop the integrated data model. You
will learn about maintaining a centralized data lake in chapter 13, Data
Engineering and Machine Learning.

¢ Consolidate vendor procurement across the organization to save cost on IT
support and maintenance expenditure.

¢ Consolidate any system that does the same thing as payment and access
management.

e Eliminate costly, wasteful, overprovisioned projects and expenditure.

Moving to the cloud can be an excellent consideration to increase IT resources efficiently
and reduce costs. The public cloud, such as AWS, offers a pay-as-you-go model that helps
you to only pay for what you are using. For example, the developer desktop can shut down
during non-working hours and weekends, which can reduce workspace costs by up to 70%.
The batch processing system needs to be brought up only to process jobs and can be shut
down immediately afterward. It works just like you switch off any electrical appliances
when not required to save electricity costs.

Applying automation is a great mechanism to increase overall IT efficiency. Automation
not only helps to eliminate costly human labor but reduces the time spent performing daily
routine jobs without error. Automate things wherever possible, for example, by
provisioning resources, running monitoring jobs, and processing data.

Make sure to do the right trade-off to improve results while deciding to optimize costs.
Let's take an example. If you are going to a theme park where you want to go on lots of
good rides, then you are willing to pay a higher price as you can see the value of the money
you are spending. To attract more customers, if the vendor decided to reduce the price and
make adjustments by lowering the number of enjoyable rides, there is a chance that you
will go to another theme park as you are looking for a good time. Here, competitors will
gain an edge and attract existing customers, while the current vendor will lose business. In
this case, cost reduction is adding business risk, which is not the right cost-optimization
approach.

[315]

Cost Considerations Chapter 11

Your goal should be measurable, and these measures should focus on both business output
and the cost of your system. The quantitative measure helps you understand the impact of
increasing output and reducing the cost. The organizational and team-level goals must
align with the end users of the application. At an organizational level, the goals will be
across organizational business units. At the team level, they will be more aligned with
individual systems. You can set up a goal, for example, to reduce the cost per transaction or
output of order by 10% every quarter or 15% every 6 months. Defining the goal ensures
that systems improve over their lifetime.

Applying standardization and governance

Organizations need a strategy to analyze misalignment and overconsumption, reduce
complexity, and define guidelines to use appropriate and efficient systems and implement
a process wherever it is required. Creating and implementing these guidelines will help
companies to develop a standard infrastructure and reduce duplicate projects and
complexity.

To implement governance, you need to set up resource limits across the organization.
Putting the service catalog in place with infrastructure as code helps to ensure that teams
are not overprovisioned with resources beyond their allocated capacity. You should have a
mechanism to understand and take action on business requirements quickly. Take both
resource creation and decommission into account when applying resource limits and
defining the process to change them.

Businesses operate multiple applications by various teams. Those teams can belong to
different business units, within their revenue stream. The capability to determine resource
costs to the application and business unit or team drives efficient usage behavior and helps
reduce cost. You can define resource capacity based on cost attribution and the
requirements of the group, organization unit, or department. To organize cost structure,
you can use resource tagging along with account structuring.

As shown in the following screenshot, you can organize your accounts in different
organization units (OUs), such as HR and Finance, and each department under the OU
can have its own account. For example, here, HR has separate accounts for Payroll and
Marketing, while Finance has separate accounts for Sales and Marketing;:

[316]

Cost Considerations

Chapter 11

© Root
@HR
+ Payroll
+ Marketing
- Finance
+ Sales

+ Marketing

@ TREE VIEW

Organizational units (2)

+ New organizational unit

Accounts (2)

[userd ou2

userd@amazon.com

HR

Q, Filter

[Payroll] Marketing

[user3_ou2

user3@amazon.com

Enterprise account structure for organizational units

In the preceding account structuring strategy, you can control costs at each business unit
and department level. Adopting a charge-back mechanism for each department increases
accountability for cost at a more granular level, which helps to optimize cost. Account

structuring helps you to apply high security and compliance standards across the

organization. As each account is linked to a parent account, you can get a great deal on the
mass utilization of resources from vendors by consolidating expenditure across the

organization.

As shown in the following screenshot, to get full cost visibility and consolidation across
resources, you can tag each resource provisioned at the team level, which provides more

granular control:

Type

Environment

Department

Business Unit

Add another tag

Key (128 characters maximum)

(Up to 50 tags maximum)

Value (256 characters maximum)

AppServer

Marketing

Finance

Resource tagging for cost visibility

[317]

Cost Considerations Chapter 11

In the preceding diagram, you can see tagging strategy, which indicates that the given
server is for application deployment and is utilized by the development team. This given
server is owned by the marketing department of the finance business unit. In this way, the
organization can get a granular level of cost expenditure visibility, and the team will be
more frugal in their spending. However, you may want to adopt the show-back mechanism
at the team level compared to the charge-back mechanism at the department and business
unit level.

You can define your mechanism for tagging, where you can attach a name and value, such
as resource name and owner name, to any resource. Almost every public cloud provider
gives tagging capabilities out of the box. For on-premise, you can embed server metadata
such as DNS name or hostname. Tagging not only helps you to organize costs but also to
define a capacity limit, security, and compliance. It can be an excellent tool for inventory
management and to keep an eye on the growing need for resources at every level of the
organization.

Business leaders should evaluate the overall requirement to create efficient IT architectures.
It requires collaboration to develop robust IT architecture and define governance across
functional teams to set up accountability. Also, set up a standard to review the architecture,
create the baseline for any new project initiative, and explain the process that will make
sure that the system complies with the correct architecture and identify the route to
improvement.

Engage all impacted stakeholders within your business in usage and cost discussions. CFO
and application owners must understand resource consumption and purchasing options.
Department owners must understand the overall business model and the monthly billing
process. It will help to set up the direction for the business units and the whole company.

Make sure third-party vendors are aligned to your financial goals and can adjust their
engagement models. Vendors should provide a cost analysis of any application they own
and develop. Each team within the organization should be able to translate business, cost,
or usage factors from the management into system adjustments, which help the application
to implement and achieve the desired goals of the company.

Monitoring cost usage and report

Accurate cost factors help you to determine the profitability of business units and products.
Cost tracking helps you to allocate resources at the right place to increase ROI.
Understanding cost drivers helps you to control your business expenditure.

[318]

Cost Considerations Chapter 11

To optimize costs, you must know your expenditure pattern across the organization. You
need to have visibility of IT cost expenditures over a period of time to determine cost-
saving opportunities. You can take the required steps for cost optimization and understand
the impact by creating a visualization of cost trends, which shows historical cost and
forecasts by resources and departments across the organization. Your team needs to gather
data by logging all data points, analyze them with monitoring, and then create a
visualization report.

To identify cost-saving opportunities, you need detailed insight into your workload
resource utilization. Cost optimization depends upon your ability to forecast future
spending and put methods in place to align cost and usage as per your forecast. The
following are the primary areas where you want to have data visualization for cost-saving;:

¢ Determine the most significant investments in resources
¢ Analyze and understand your expenditure and usage data
Budget and forecast

e Receive an alert when you exceed your budgeted or forecasted thresholds

The following report is showing resources expenditure over 6 months in AWS. Looking at
the visualization, you can see that data warehousing service Amazon Redshift, represented
by the purple bar, is consuming maximum costs with an increase in the trend until
November. As the business unit can visualize the high cost in October, it prompts the
system admin to take an in-depth look at cost optimizations, where they find
overprovisioned resources. The admin performs cleanup by stopping additional server
instances in November, which brings down the data warehousing service cost by 90%:

Last 6 Months v Monthy v @ I Bar »
Group by: Linked Account Region Instance Type Usage Type Cost Category * Tag ~ More ~
Costs ($ in thousands)

Nov 2019
15 Redshit: $172.50
Total Cost: $2,051.22
1.0
) h l ‘
- il I N d 11
Jun 2019 Jul 2019 Aug 2019 Sep 2019 Oct 2019 Nov 2019
[l Redshift [l Kinesis Analytics [l SageMaker EC2-Instances [l EC2-Other [l Others

Resource cost and usage report

[319]

Cost Considerations

Chapter 11

The preceding report helped business owners to understand cost patterns and take a

reactive approach to cost control. The reactive approach caused hidden costs, which went
undetermined for a specified period. For the proactive approach, the forecast can help to

make the decision ahead of time.

The following report shows daily cost expenditure in the filled blue bars and forecast

spending in the empty blue bars. Looking at the report, you can see that it is likely that cost

may increase in the next couple of weeks, and you can take action to understand cost
attributes to control costs:

& Daily costs
Last Month + End of Month v Dalyv @ I, Bar v
Group by: None Service Linked Account Region Instance Type Usage Type HResource CostCategory ~ Tag ~ More ~
Costs ($)
200 pecad
Bl Costs mean estimate $152.29
80% Prediction Interval: $100.76 - $203.62 1
150 M mm # e
100
0 I I I I I I I I I
Mov-01 Nov-07 MNov-13 Nov-18 Nov-25 Dec-01* Dec-07° Dec-13* Dec-19*" Dec-25" Dec-31*
Il Costs [|Forecast ——80% Prediction Interval

Cost trend and cost forecast report

Monitoring your costs against the budget can give you another proactive measure to
control costs. Setting up an alert when expenditure reaches a certain threshold of the

budget (for example, 50% or 80%) helps you to review and adjust your ongoing costs.

[320]

Cost Considerations

Chapter 11

In the following report, you can visually determine the current cost against budgeted cost,
which reached 42% in the first week of the month. At this rate, your forecast is going over
182% of the budgeted cost and requires attention to adjust ongoing expenditure:

Current vs. budgeted

Current

$1,067.05
Budget History ($)

5000

4000

3000

2000
1000

20\8 znm 2019 20\5

Forecasted vs. budgeted

Budgeted amount Forecasted Budgeted amount
$2,500 $4,573.19 $2,500

& View in AWS Cost Explorer & Download CSV

sw
2019

2013 2019 2019 2019 2019 2019
(MTD)

W Actual Budgeted

Cost and budget report

Cost and budget reports help you to control costs by taking proactive action. Combining
your actual running costs with budgets and forecasts provides a great deal of cost control

on a daily basis.

You can also set up an alert when your actual cost reaches a certain threshold in the budget
or forecast. It alerts you proactively via email or mobile message and tells you to take

proactive action to control costs.

[321]

Cost Considerations Chapter 11

In the following screenshot, you can see an alert has been set up for when the actual cost
reaches 80% of the budget. You can set up multiple alerts to get information when the cost
reaches 50% or 80% of the budget or forecast:

Configure alerts

You can send budget alerts via email and/or Amazon Simple Notification Service (Amazon SNS) topic.

Budgeted amount Edit
$2,500

Alert 1
Send alert based on:

© Actual Costs

Forecasted Costs
Alert threshold

80 % of budgeted amount «

Notify the following contacts when Actual Costs is Greater than 80% ($2,000.00)
Email contacts

abc@example.com

Add email contact

Alert against actual cost

One way to do cost control is by right-sizing your environment with resources monitoring,
and trigger alarms for over- or underutilization. Analysis of resources can be performed
using monitoring tools such as Splunk or CloudWatch and custom logs, where customized
metrics such as application memory utilization of your system can be monitored to perform
right-sizing. Low utilization of a resource could be a criterion for identifying opportunities
for cost optimization. For example, CPU utilization, RAM utilization, network bandwidth,
and the number of connections to the application can be analyzed and monitored.

[322]

Cost Considerations Chapter 11

You need to be careful when resizing your environment to make sure you are not
impacting customer experience. The following are best practices to apply when you
perform right-sizing;:

¢ Make sure monitoring reflects the end user experience. Select the correct period.
For example, performance metrics should cover 99% of the user's request-
response time rather than taking an average response time.

e Select the correct monitoring cycle, such as every hour, day, or week. For
example, if you are conducting daily analysis, you might miss a weekly or
monthly cycle of high utilization and under provision your system.

e Assess the cost of change against the cost-saving. For example, you may have to
perform additional testing or engage resources to perform resizing. This cost-
benefit analysis will help you to assign resources.

Measure application utilization against your business requirement, for example, how many
user requests are expected to come by the end of the month or during peak season.
Identifying and optimizing the utilization gap leads you to save costs. For this, use the right
tool that covers all dimensions from cost-saving to system utilization and impact on
customer experience due to changes. And then utilize reports to understand business ROI
impact due to cost changes.

Cost optimization in the public cloud

The public cloud, such as AWS, Microsoft Azure, and Google Cloud Platform (GCP),
provides a great deal of cost optimization with the pay-as-you-go model. The public cloud
cost model allows customers to trade capital expenses for variable expenses, paying for IT
resources as they consume them. Operational expenses are usually lower due to economies
of scale. It could be cost-effective to be in the cloud and get the benefit of continued price
reductions that occur over time. The other advantage is that you get additional tools and
functionality out of the box with a cloud provider such as AWS, which helps you to achieve
better agility.

You need a different mindset when defining the cloud cost structure model as it is pretty
different from traditional cost, most of which most enterprises have been following for
decades. In the cloud, you have all the infrastructure available at your fingertips, which
requires greater control and regulation. Clouds provide several tools for cost governance
and regularization. For example, in AWS, you can set up service limits per account, so the
dev team cannot utilize more than 10 servers, and production can have the required
number of servers and databases with a buffer.

[323]

Cost Considerations Chapter 11

In the cloud, all resources are associated with accounts, so it's easy to keep track of IT
resource inventories in a single place and monitor their utilization. In addition to that, you
get tools that can collect data across various IT resources and provide suggestions. As
shown in the following screenshot, AWS Trusted Advisor crawls through all resources in
the account and offers cost-saving recommendations based on resource utilization:

Cost Optimization

¥ 336400

$1,386.84
Potential monthly savings
Filter by tag

Tag Key Tag Value Apply filter Reseat

Cost Optimization Checks

» 0 Amazon EC2 Reserved Instances Optimization

A significant part of using AWS involves balancing your Reserved Instance (Rl) usage and your On-Demand instance usage.

Estimated monthly savings with one year Rl term: $282.75 (39.0%). Estimated monthly savings with three year Rl term: $421.84 (59.0%)
» 0 Amazon RDS |dle DB Instances

Checks the configuration of your Amazon Relational Database Service (Amazon RDS) for any DB instances that appear to be idle.

1 of 1 DB instances appear to be Idle. Monthly savings of up to $208.80 are available by minimizing idle DB Instances.

Cost-saving suggestions from AWS Trusted Advisor

In the preceding screenshot, Trusted Advisor has detected continuous utilization of the
application server (Elastic Cloud computing, EC2) and advises buying a reserve instance
by paying 1 year upfront with a 40% cost saving. Further checks have identified an
underutilized database (Amazon RDS) and suggest shutting it down to make a potential
saving.

The cloud can provide an excellent value proposition for cost-saving. To begin with, you
can create a hybrid cloud, where you establish connectivity between your on-premises data
center and the cloud. You can move development and test servers to the cloud to determine
cost structure and potential savings. Once you have set up cost governance in the cloud,
move more workload as per the cost-benefit analysis. However, you need to assess your
workload and whether it can be moved to the cloud and define a strategy. You learned
about cloud migration in chapter 5, Cloud Migration and Hybrid Cloud Architecture Design.

[324]

Cost Considerations Chapter 11

Increasingly, public cloud providers are offering managed services, which eliminates any

infrastructure maintenance cost and overheads for alert and monitoring configurations. A
managed service reduces the total costs of ownership by reducing cost as service adoption
increases.

Summary

Cost optimization is a continuous effort from application inception (proof-of-concept to its
implementation and post-production). You need to continuously review architectures and
cost-saving efforts.

In this chapter, you learned about design principles to optimize costs. Before making any
purchase decision, you should consider the total cost of ownership for the entire life cycle
of software or hardware. Planning a budget and keeping track of forecasts help you to stay
on the cost optimization path. Always keep track of your expenditures and look for
possible opportunities for cost optimization without affecting user experience or business
value.

You learned about the various techniques for cost optimization, which include reducing
architectural complexity by simplifying enterprise architecture and setting a standard that
everyone can follow. We recommended avoiding duplication by identifying idle and
repeated resources, and take consolidation effort to negotiate the cost of bulk purchase.
Apply standardization across the organization to limit resource provision and develop a
standard architecture. Tracking data for your actual costs against budgets and forecasts can
help you to take proactive action. You learned about various reports and alerts that can
help to control costs. You also learned about cost optimization in the cloud, which can help
you further to optimize value.

Automation and agility are some major factors that increase resource efficiency, and
DevOps can provide a great deal of automation. In the next chapter, you will learn about
various DevOps components and DevOps strategies to efficiently deploy your workload in
the most automated way.

[325]

12

DevOps and Solution
Architecture Framework

In traditional environments, the development team and the IT operations team work in
silos. The development team gathers requirements from business owners and develops the
applications. System administrators are solely responsible for operations and for meeting
uptime requirements. These teams generally do not have any direct communications
during the development life cycle and each team rarely understands the processes and
requirements of the other team.

Each team has its own set of tools, processes, and approaches that are redundant, and
sometimes, efforts are conflicting. For example, the development and quality assurance
(QA) teams can be testing the build on a specific patch of the operating system (OS).
However, the operations team deploys the same build on a different OS version in the
production environment, causing issues and delays in the delivery.

DevOps is a methodology that promotes collaboration and coordination between
developers and operational teams to deliver products or services continuously. This
approach is constructive in organizations where the teams rely on multiple applications,
tools, technologies, platforms, databases, devices, and so on in the process of developing or
delivering a product or service.

Although there are different approaches to the DevOps culture, all are about achieving a
common goal. DevOps is about delivering a product or service in the shortest amount of
time by increasing operational efficiency through shared responsibilities. DevOps helps to
make delivery without compromising on quality, reliability, stability, resilience, or security.
In this chapter, you will learn the various following components of DevOps:

Introducing DevOps
Understanding the benefits of DevOps
Understanding the components of DevOps

Introducing DevOps in security

DevOps and Solution Architecture Framework Chapter 12

Combining DevSecOps and continuous integration/continuous
delivery (CI/CD)

Implementing a CD strategy

Implementing continuous testing in the CI/CD pipeline
Using DevOps tools for CI/CD
¢ Implementing DevOps best practices

By the end of this chapter, you will learn about the importance of DevOps in application
deployment, testing, and security. You will learn DevOps best practices, and different tools
and techniques to implement them.

Introducing DevOps

In a DevOps (short for development and operations) approach, both the development
team and the operations team work collaboratively during the build and deployment
phases of the software development life cycle, sharing responsibilities, and providing
continuous feedback. The software builds are tested frequently throughout the build phase
on production-like environments, which allows early detection of defects.

Sometimes, you will find a software application development and its operations are
handled by a single team, where engineers work across the entire application life cycle,
from development and deployment to operations. Such a team needs to develop a range of
skills that are not limited to a single function. Application testing and security teams may
also work more closely with the operations and development teams, from the inception to
the production launch of an application.

Speed enables organizations to stay ahead in the competition and address customer
requirements quickly. Good DevOps practices encourage software development engineers
and operations professionals to work better together. This results in closer collaboration
and communication, leading to a shorter time to market (TTM), reliable release, improved
code quality, and better maintenance.

Developers benefit from feedback provided by the operations teams and create strategies
for testing and deployment. System administrators don't have to implement defective or
untested software on production environments because they participate in the build phase.
As all stakeholders in the software development and delivery life cycle collaborate, they
can also evaluate the tools that they intend to use at each step of the process, to verify
compatibility between the devices and also to determine whether any tools can be shared
across the teams.

[327]

DevOps and Solution Architecture Framework Chapter 12

DevOps is a combination of culture and practices. It requires organizations to change their
culture by breaking down the barriers between all teams in the product development and
delivery life cycle. DevOps is not just about development and operations; rather, it involves
the entire organization, including management, business/application owners, developers,
QA engineers, release managers, the operations team, and system administrators. DevOps
is gaining popularity as the preferred operating culture, especially for organizations that
deal with cloud or distributed computing.

Understanding the benefits of DevOps

The goal of DevOps is a CD model that is repeatable, reliable, stable, resilient, and secure.
These properties improve operational efficiency. To achieve this goal, teams must
collaborate and get involved in the development and delivery process. All technical team
members should have experience with the processes and tools involved in the development
pipeline. A mature DevOps process provides benefits, as shown in the following diagram:

| |
- E - Collaboration
- -
| |
Scale Security

DevOps Benefits
U@])
Speed

Fast
delivery

Reliability

Benefits of DevOps

[328]

DevOps and Solution Architecture Framework Chapter 12

These benefits of DevOps are detailed further here:

e Speed: Releasing product features at a quick pace helps to accommodate
changing business needs of your customers and expand your market. A DevOps
model helps an organization to achieve results faster.

e Rapid delivery: DevOps processes facilitate more efficiency by automating end-
to-end pipelines, from code build to code deploy and production launch. Rapid
delivery helps you to innovate faster. Faster release of bug fixes and features
helps you to gain a competitive edge.

¢ Reliability: DevOps processes provide all checks to ensure delivery quality and
safe application updates at a rapid pace. DevOps practices such as CI and
CD embed automation testing and security checks for a positive end-user
experience.

¢ Scale: DevOps helps to scale your infrastructure and application on an on-
demand basis by including automation everywhere.

e Improved collaboration: The DevOps model builds a culture of ownership
whereby the team takes account of their actions. The operations and dev teams
work together in a shared responsibility model. Collaboration simplifies the
process and increases efficiency.

¢ Security: In an agile environment, making frequent changes requires stringent
security checks. The DevOps model automates security and compliance best
practices, monitors them, and takes corrective action in an automated way.

DevOps removes barriers between the developer and operations teams that used to work in
silos. The DevOps model optimizes the productivity of the development team and the
reliability of system operations. As teams closely collaborate, this helps to increase
efficiencies and improve quality. Teams take full ownership of the services they deliver,
often beyond the traditional scope of their roles, and develop thinking from a customer
point of view to solve any issue.

Understanding the components of DevOps

DevOps tools and automation bring together development and system operations. The
following are critical components of a DevOps practice:

CI/CD
Continuous monitoring and improvement

Infrastructure as code (IaC)

Configuration management (CM)

[329]

DevOps and Solution Architecture Framework Chapter 12

A best practice across all the elements is automation. Automating processes allows you to
efficiently perform these operations in a fast, reliable, and repeatable fashion. Automation
can involve scripts, templates, and other tools. In a thriving DevOps environment,
infrastructure is managed as code. Automation enables DevOps teams to set up and tune
test and production environments rapidly. Let's explore more details about each
component.

CI/ICD

In CI, developers commit code frequently to a code repository. The code is built frequently.
Each build is tested using automated unit tests and integration tests. In CD, code changes
are committed to the repository and developed frequently. Builds are deployed to test
environments and are tested using automated, and possibly manual, tests. Successful
builds pass tests and are deployed to staging or production environments. The following
diagram illustrates the impact of CI versus CD in the software development life cycle:

Code

| Buid) Continuous
S Integration
Continuous T
Delivery:
. Test
Integration
Deployment
And p - .
Management SR
..\ /.
7 “\\
| Deploy)
hN /

Monitor

CI/CD

[330]

DevOps and Solution Architecture Framework Chapter 12

As shown in the preceding diagram, CI refers to building and unit testing stages of the
software development life cycle. Every update that is committed in the code repository
creates an automated build and test. CD is an essential aspect of CI which extends CI
process further to deploy build in production. In CI/CD practices, several people work on
the code. They all must use the latest working build for their efforts. Code repositories
maintain different versions of the code and also make the code accessible to the team. You
check out the code from the repository, make your changes or write new code in your local
copy, compile and test your code, and then frequently commit your code back to the
repository.

CI automates most of the software release process. It creates an automated flow that builds,
tests, and then stages the update. However, a developer must trigger the final deployment
to a live production environment that is not automated. It expands upon CD by deploying all
code changes to a testing environment and/or a production environment after the build
stage. If CD is implemented correctly, developers will always have a tested and
deployment-ready build.

The concepts in the following diagram illustrate everything related to the automation of an
application, from code commits into a code repo, to the deployment pipeline. It shows an
end-to-end flow, from build to the production environment where, developer check-in the
code changes in code repository which is pulled by CI server. CI server trigger the build to
create deployment package with new application binaries and corresponding
dependencies. These new binaries are deployed in targeted development or testing
environment. Also binaries get check-in into artifact repository for safe version controlled
storage:

Artifact Repo

Package Create ol

> . —>

Dependencies Builder 1 I:I
Config

Build Binary

Push l
Code Config

. test aam
—>| Version Control |« »| Cl Server l I I I -

Git Get/Pull
User Code Deploy Server
Test/Dev/prod
ENV

Code Repo

Build Success /Fail report to dev

CI/CD for DevOps

[331]

DevOps and Solution Architecture Framework Chapter 12

In CI/CD, software development life cycle phases such as code, build, deploy, and test are
automated using the DevOps pipeline. The deploy and provision phase needs to be
automated using IaC scripts. Monitoring can be automated with various monitoring tools.

A robust CD pipeline also automates the provisioning of infrastructure for testing and
production environments and enables monitoring and management of test and production
environments. CI/CD provides multiple benefits to the team, such as improving developer
productivity by saving time on building, testing, and deployment of code. It helps the dev
team to detect and fix bugs quickly and launch feature updates faster in the production
environment.

CD does not mean that every change committed by the developer goes into production.
Instead, it means that every change is ready to go into production. When the changes are
staged and tested in the stage environment, a manual approval process initiates and gives a
green signal to deploy to production. Thus, in CD, deploying to production becomes a
business decision and is still automated with tools.

Continuous monitoring and improvement

Continuous monitoring helps to understand application and infrastructure performance
impacts on the customer. By analyzing data and logs, you can learn how code changes
impact users. Active monitoring is essential in the era of 24/7 services and constant updates
to both applications and infrastructure. You can be more proactive about monitoring
services by creating alerts and performing real-time analysis.

You can track various metrics to monitor and improve your DevOps practice. Examples of
DevOps-related metrics are:

¢ Change volume: This is the number of user stories developed, the number of
lines of new code, and the number of bugs fixed.

¢ Deployment frequency: This indicates how often a team is deploying an
application. This metric should generally remain stable or show an upward
trend.

¢ Lead time from development to deployment: The time between the beginning of
a development cycle to the end of deployment can be used to identify
inefficiencies in the intermediate steps of the release cycle.

¢ Percentage of failed deployments: The percentage of failed deployments,
including the number of deployments that resulted in outages, should be a low
number. This metric should be reviewed in conjunction with the change volume.
Analyze potential points of failure if the change volume is low but the number of
failed deployments is high.

[332]

DevOps and Solution Architecture Framework Chapter 12

e Availability: Track how many releases caused failures that possibly resulted in
violations of Service-Level Agreements (SLAs). What is the average
downtime for the application?

¢ Customer complain volume: The number of complain tickets filed by customers
is an indicator of the quality of your application.

e Percentage change in user volume: The number of new users signing up to use
your application and the resulting increase in traffic can help you scale your
infrastructure to match the workload.

After you deploy builds to the production environment, it is essential to monitor the
performance of your application continuously. As we discussed about automating
environment, so let explore more details on IaC.

laC

Provisioning, managing, and even deprecating infrastructure is a costly activity in terms of
human capital. Furthermore, repeated attempts to build and modify environments
manually can be fraught with errors. Whether working from prior experience or a well-
documented runbook, the tendency for a human to make a mistake is a statistical
probability.

We can automate the task of creating a complete environment. Task automation can help to
effortlessly complete repetitive tasks and provide significant value. With IaC, we can define
our infrastructure in the form of templates. A single template may consist of a part or the
entirety of an environment. More importantly, this template can be used repeatedly to
create the same identical environment time and again.

In IaC, infrastructure is spun up and managed using code and CI. An IaC model helps you
to interact with infrastructure programmatically at scale and avoid human errors by
allowing you to automate resource configuration. That way, you can work with
infrastructure in the same way that you would with code by using code-based tools. As the
infrastructure is managed through code, so the application can be deployed using a
standardized method, and any patches and versions can be updated repetitively without
any errors. Some of the most popular infrastructure as code scripting tools are Ansible,
Terraform and AWS CloudFormation.

[333]

DevOps and Solution Architecture Framework Chapter 12

Configuration management (CM)

CM is the process of using automation to standardize resource configurations across your
entire infrastructure and applications. CM tools such as Chef, Puppet, and Ansible can help
you manage IaC and automate most system administration tasks, including provisioning,
configuring, and managing IT resources. By automating and standardizing resource
configurations across the development, build, test, and deployment phases, you can ensure
consistency and eliminate failures caused by misconfiguration.

CM can also increase the productivity of your operations by allowing you to automatically
deploy the same configuration to hundreds of nodes at the push of a button. CM can also
be leveraged to deploy changes to configurations.

Although you can use registry settings or databases to store system configuration settings, a
configuration management application allows you to maintain version control as well, in
addition to storage. CM is also a way to track and audit configuration changes. If necessary,
you can even maintain multiple versions of configuration settings for various versions of
your software.

CM tools include a controller machine that manages server nodes. For example, Chef
requires a client agent application to be installed on each server that it needs to manage,
and a master Chef application installs on the controller machine. Puppet also works the
same way with a centralized server. However, Ansible has a decentralized approach and
doesn't require the installation of agent software on the server nodes. The following table
shows a high-level comparison between the popular configuration management tools:

Ansible Puppet Chef
Controller machine Chef workstation .
. . looks for changes in
. applies changes to |Master synchronizes
Mechanism . Chef servers and
servers using changes to Puppet node ushes them to Chef
Secure Shell (SSH) p
node
Architecture Any server can be |Centralized control by Centralized control by
the controller Puppet master Chef server
Script Language [YAML Domain-specific on Ruby [Ruby
Scrlpfmg Playbook and roles |Manifests and modules Recipes and
Terminology cookbooks
Test Execution Sequential order Non-sequential order Sequential order

[334]

DevOps and Solution Architecture Framework Chapter 12

CM tools provide their own domain-specific language and set of features for automation.
Some of these tools have a learning curve whereby the team has to spend some time to
learn the tool.

As security is becoming a priority for any organization, so bringing complete automation
security is the need of the hour. To avoid human error, organizations are moving to tight
security implementation and monitoring, using the DevOps process popularly known

as DevSecOps. Let's explore more about DevSecOps (short for development, security and
operations) in the next section.

Introducing DevSecOps

We are now more focused on security than ever. In many situations, security is the only
way to win customer focus. DevSecOps is about the automation of security and
implementation of security at scale. The development team is always making changes and
the DevOps team is publishing them in production (changes are often customer-facing).
DevSecOps is required to ensure application security in the overall process.

DevSecOps is not there to audit code or CI/CD artifacts. Organizations should implement
DevSecOps to enable speed and agility, but not at the expense of validating security. The
power of automation is to increase product-feature-launch agility while remaining secure
by implementing the required security measures. A DevSecOps approach results in built-in
security and is not applied as an afterthought. DevOps is about adding efficiency to speed
up the product launch life cycle, while DevSecOps validates all building blocks without
slowing the life cycle.

To institute a DevSecOps approach in your organization, start with a solid DevOps
foundation across the development environment, as security is everyone's responsibility.
To create collaboration between development and security teams, you should embed
security in the architecture design from inception. To avoid any security gaps, automate
continuous security testing and build it into the CI/CD pipeline. To keep track of any
security breach, apply to extend monitoring to include security and compliance by
monitoring for drift from the design state in real time. Monitoring should enable alerting,
automated remediation, and removing non-compliant resources.

Codifying everything is a basic requirement that opens up infinite possibilities. The goal of
DevSecOps is to keep the pace of innovation, which should meet the pace of security
automation. A scalable infrastructure needs scalable security, so it requires automatic
incident response remediation to implement continuous compliance and validation.

[335]

DevOps and Solution Architecture Framework Chapter 12

Combining DevSecOps and CI/CD

A DevSecOps practice needs to be embedded with every step of the CI/CD pipeline.
DevSecOps ensures the security of the CI/CD pipeline by managing the right access and
roles assigned to each server and making sure the build servers such as Jenkins are
hardened to be protected from any security glitch. In addition to that, we need to make sure
that all artifacts are validated, and code analysis is in place. It's better to be ready for
incident response by automating continuous compliance validation and incident response

remediation.

The following screenshot provides us with multiple stages to test security boundaries and
catch security issues and compliance with policies as early as possible:

Code - Scan for secrets
Build [~ ;._t_- : Tag security artifacts
< Test Test security meets
: standards
ClicD SECURITY IN
PIPELINE Cl/CD

Deploy | s B
i Deploy and register
security components

Provision| s

Monitor security

standards . -
. 4

Monitor —

DevSecOps and CI/CD

At each integration point, you can identify different issues, as illustrated in the preceding
diagram:

¢ In the coding phase, scan all code to make sure no secret key or access key is
hardcoded in between code lines.

¢ During the build, include all security artifacts such as the encryption key and
access token management, and tag them to identify them.

[336]

DevOps and Solution Architecture Framework Chapter 12

¢ During the test, scan the configuration to make sure all security standards are
met by test security.

e In the deploy and provision phase, make sure all security components are
registered. Perform a checksum to make sure there are no changes in the build
files.

¢ Monitor all security standards during the monitoring phase. Perform continuous
audit and validation in an automated way.

DevSecOps CI/CD gives us confidence that code is validated against the corporate security
policy. It helps to avoid any infrastructure and application failure in later deployment due
to different security configurations. DevSecOps maintains agility and ensures security at
scale without affecting DevOps' pace of innovation.

Implementing a CD strategy

CD provides seamless migration of the existing version to the new version of the
application. Some of the most popular techniques to achieve through CD are:

¢ In-place deployment: Update application in a current server.

¢ Rolling deployment: Gradually roll out the new version in the existing fleet of
servers.

¢ Blue-green deployment: Gradually replace the existing server with the new
server.

¢ Red-black deployment: Instant cutover to the new server from the existing
server.

¢ Immutable deployment: Stand up a new set of servers altogether.

Let's explore each option in more detail.

[337]

DevOps and Solution Architecture Framework Chapter 12

In-place deployment

In-place deployment is a method of rolling out a new application version on an existing
fleet of servers. The update is done in one deployment action, thereby requiring some
degree of downtime. On the other side, there are hardly any infrastructure changes needed
for this update. There is also no need to update existing Domain Name System (DNS)
records. The deployment process itself is relatively quick. If the deployment fails,
redeployment is the only option for restoration. As a simple explanation, you are replacing
the existing application version (v1) on the application infrastructure with the new version
(v2). In-place updates are low-cost and fast to deploy.

Rolling deployment

With a rolling deployment, the server fleet is divided into a group, so it doesn't need to be
updated at the same time. The deployment process runs both old and new versions of
software on the same server fleet but with different subgroups. A rolling deployment
approach helps to achieve zero downtime as, if a new version deployment fails, then only a
subgroup of servers is impacted from the entire fleet, and risk is minimal because half of
the fleet will still be up and running. A rolling deployment helps to achieve zero downtime;
however, deployment time is little more than in-place deployment.

Blue-green deployment

The idea behind blue-green deployment is that your blue environment is your existing
production environment carrying live traffic. In parallel, you provision a green
environment, which is identical to the blue environment other than the new version of your
code. When it's time to deploy, you route production traffic from the blue environment to
the green environment. If you encounter any issues with the green environment, you can
roll it back by reverting traffic to the original blue environment. DNS cutover and
swapping Auto Scaling groups are the two most common methods used to re-route traffic
in blue-green deployment.

Using Auto Scaling policies, you can gradually replace existing instances with instances
hosting the new version of your application as your application scales out. This option is
best used for minor releases and small code changes. Another option is to leverage DNS
routing to perform sophisticated load balancing between different versions of our
application.

[338]

DevOps and Solution Architecture Framework

Chapter 12

As illustrated in the following diagram, after creating a production environment that hosts
the new version of our application, you can use the DNS route to shift a small portion of

traffic to the new environment:

70% 309%

Route 53
DNS Routing
Y
E AWS Cloud
Application Load Application Load
Balancer Balancer
Servers Fleet Servers Fleet
i
/
/
/
S/
¥
IR—
K N
Database

Blue-green deployment DNS gradual cutover

Test the green environment with a fraction of production traffic; this is called canary
analysis. If the environment has functional issues, you'll be able to tell right away and
switch traffic back before impacting your users significantly. Continue to gradually shift
traffic, testing the ability of the green environment to handle the load. Monitor the green
environment to detect issues, providing an opportunity to shift traffic back, thus limiting
the blast radius. Finally, when all the metrics are right, decommission the blue environment

and release the resources.

[339]

DevOps and Solution Architecture Framework Chapter 12

Blue-green deployment helps to achieve zero downtime and provides easy rollback. You
can customize the time to deploy as per your needs.

Red-black deployment

In red-black deployment, before standing up a new version of a system, first, perform
canary testing. The canary replaces around 1% of its existing production system with the
latest version of the application and monitors the newest version for errors. If the canary
clears this initial test, the system is deemed ready for deployment.

In preparation for the switchover, a new version of the system stands up side by side with
the old version of the system. The initial capacity of the new system is set manually by
examining how many instances are currently running in production and setting this
number as the desired capacity for the new Auto Scaling group. Once the new system is up
and running, both systems are red. The current version is the only version accepting traffic.

Using the DNS service, the system is then cut over from the existing version to the new
version. At this point, the old version is regarded as black; it is still running but is not
receiving any traffic. If any issues are detected with the new version, then reverting
becomes as simple as pointing the DNS server back to the load balancer hosting the old
version.

Red-black deployment is also known as dark launch and is slightly different from blue-
green deployment. In red-black deployment, you do sudden DNS cutover from the old
version to the new version, while in blue-green deployment, the DNS gradually increases
traffic to the new version. Blue-green deployments and dark launches can be combined to
deploy both versions of software side by side. Two separate code paths are used, but only
one is activated. A feature flag activates the other code path. This deployment can be used
as a beta test where you can explicitly enable the new features.

Immutable deployment

An immutable or disposable upgrade is an easier option if your application has unknown
dependencies. An older application infrastructure that has been patched and re-patched
over time becomes more and more difficult to upgrade. This type of upgrade technique is
more common in an immutable infrastructure.

[340]

DevOps and Solution Architecture Framework Chapter 12

During the new release, a new set of server instances are rolled out by terminating older
instances. For disposable upgrades, you can set up a cloned environment with deployment
services such as Chef, Puppet, Ansible, and Terraform, or use them in combination with an
Auto Scaling configuration to manage the updates.

In addition to downtime, you need to consider the cost while designing your deployment
strategy. Consider the number of instances you need to replace and your deployment
frequency to determine the cost. Use the approach that best fits, taking your budget and
downtime into consideration.

In this section, you learned about various CD strategies that help you to make your
application release more efficient and hassle-free. For high-quality delivery, you need to
perform application testing at every step, which often requires significant effort. A DevOps
pipeline can help you to automate the testing process and increase the quality and
frequency of feature releases. Let's learn more about continuous testing in the CI/CD
pipeline.

Implementing continuous testing in the
CI/CD pipeline

DevOps is key for the continually changing business scenarios based on customer feedback,
demand for new features, or shifts in market trends. A robust CI/CD pipeline ensures
further features/feedback incorporated in less time, and customers get to use the new
features faster.

With frequent code check-ins, having a good testing strategy baked into your CI/CD
pipeline ensures you close that feedback loop with quality. Continuous testing is essential
in balancing the CI/CD pipeline. While adding software features at a rapid pace is a good
thing, ensuring that the features adhere to the right quality is achieved by continuous
testing.

Unit tests form the largest amount of your testing strategy. They typically run on the
developer's machine and are the fastest and cheapest. A general rule of thumb is to
incorporate 70% of your testing efforts in unit testing. Bugs caught at this stage can be fixed
relatively faster, with fewer complexities.

[341]

DevOps and Solution Architecture Framework Chapter 12

Unit tests are often performed by the developer, and once code is readyj, it is deployed for
integration and system testing. These tests require their own environments and sometimes
separate testing teams, which makes the testing process costlier. Once the team ensures that
all intended features are working as expected, the operations team needs to run
performance and compliance tests. These tests need production-like environments and

are costlier. Also, User Acceptance Testing (UAT) needs a replica of production-like
environments as well, causing more expense.

As illustrated in the following diagram, in the development phase, developers perform
unit tests to test code changes/new features. Testing is usually done on a developer's
machine after coding is complete. It is also recommended to run static code analysis on the
code changes and do code coverage, adherence to coding guidelines, and so on. Smaller
unit tests with no dependencies run faster. Therefore, the developer can find out quickly if
the test has failed:

Continuous Integration Continuous Delivery/ Deployment

< >

Development [Build _> Stage :>

Unit testing Integration and component System testing, Performance A/B testing,
testing testing, UAT testing Canary testing

Continuous testing in CI/CD

The build phase is the first phase to test for integration between different components and
individual components themselves. The build phase is also an excellent time to test if the
code committed by a developer breaks any existing feature and to perform regression
testing.

A staging environment is a mirror of the production environment. An end-to-end system
test is performed at this stage (U, backend logic, and API are tested extensively).
Performance testing tests the application performance under a particular workload.
Performance tests include load tests and stress tests. UAT is also performed at this stage, in
readiness for production deployment. Compliance testing is done to test for industry-
specific regulatory compliance.

[342]

DevOps and Solution Architecture Framework Chapter 12

In the production phase, a strategy such as A/B testing or canary analysis is used to test the
new application version. In A/B testing, the new application version is deployed to a small
percentage of production servers and tested for user feedback. Gradually, depending on
how well the users receive the new application, the deployment is increased to span all
production servers.

A/B testing

Often, in software development, it isn't clear which implementation of a feature will be
most successful in the real world. An entire computer science
discipline—Human/Computer Interaction (HCI)—is devoted to answering this question.
While Ul experts have several guidelines to help them design suitable interfaces, often, the
best choice of design can only be determined by giving it to users and seeing whether they
can use the design to complete a given task.

As shown in the following diagram, A/B testing is a testing methodology in which two or
more different versions of features are given to different sets of users. Detailed metrics on
the usage of each implementation are gathered, and Ul engineers examine this data to
determine which implementation should be adopted going forward:

&

Application Load Balancer

Web Server Fleet

Database

Split users by feature experiment using A/B testing

[343]

DevOps and Solution Architecture Framework Chapter 12

It's easy to launch several different versions of your application, each containing different
implementations of a new feature. DNS routing can be used to send the majority of traffic
to the current system, while also sending a fraction of the existing traffic to the versions of
the system running the new features. DNS round-robin resolution is supported by most
DNS resolvers and is an effective way to spread incoming traffic.

Load and performance testing are another important factor. For Java-based applications,
you can use JMeter to load-test a relational database by issuing Java Database Connectivity
(JDBC) commands. For MongoDB, you can use Mongo-Perf, which can generate a
reproducible load on the database and record the response time. You can then hit the
components and services that use the database and also simultaneously test the database.

One common way to measure the load on instances is through what is called micro-
benchmarking. In micro-benchmarking, you measure the performance of a small sub-
component of your system (or even a snippet of code) and then attempt to extrapolate
general performance data from this test result. In the case of testing a server, you may test a
slice of the system on a new instance type and compare that measurement to the same slice
measured on your currently running system, which is now using another server type and
configuration.

Using DevOps tools for CI/CD

To build a CI/CD pipeline, a developer requires various tools. These include a code editor, a
source repository, a build server, a deployment tool, and orchestrating an overall CI
pipeline. Let's explore some popular technology choices of developer tools for DevOps,
both in the cloud and on-premises.

Code editor

DevOps is a hands-on coding role, where you often need to write a script to automate the
environment. You can use the ACE editor or the cloud-based AWS Cloud9 integrated
development environment (IDE); you can use a web-based code editor on your local
computer or install a code editor in your local server that connects to the application
environments—such as dev, test, and prod—to interact. An environment is a place where
you store your project's files and where you run the tools to develop your apps. You can
save these files locally on the instance or server, or clone a remote code repository into your
environment. The AWS Cloud9 IDE is the cloud-native IDE provided as a managed service.

[344]

DevOps and Solution Architecture Framework Chapter 12

The Ace editor lets you write code quickly and easily. It's a web-based code editor but
provides performance similar to popular desktop-based code editors such as Eclipse, Vim,
and Visual Studio Code (VSCode), and so on. It has standard IDE features such as live
syntax and matching parentheses highlighting, auto-indentation and completion, toggling
between tabs, integration with version control tools, and multiple cursor selections. It
works with large files, having hundreds of thousands of lines without typing lag. It has
built-in support for all of the popular coding languages along with debugging tools, and
you can also install your own tools. For a desktop-based IDE, VS Code and Eclipse are
other popular code editor options that DevOps engineers can choose.

Source code management

There are multiple choices available for your source code repository. You can set up, run,
and manage your Git server, where you will be responsible for everything. You can choose
to use a hosting service such as GitHub or Bitbucket. If you are looking for a cloud solution,
then AWS CodeCommit offers a secure, highly scalable, and managed source control
system where you can host private Git repositories.

You need to set up authentication and authorization for your code repository to provide
access to authorize team members for code to read or write. You can apply data encryption
in transit and at rest. When you push into the code repository (git push), it encrypts the
data and then stores it. When you pull from the code repository (git pull), it decrypts the
data and then sends the data back to the caller. The user must be an authenticated user with
the proper access level to the code repository. Data can be encrypted in transit by
transmitting through encrypted network connections using HTTPS or SSH protocols.

Cl server

A CI server is also known as a build server. With teams working on multiple branches, it
gets complicated to merge back into the master. CI, in this scenario, plays a key role. CI
server hooks provide a way to trigger the build based on the event when code is committed
to the repository. Hooks, which are incorporated in almost every version control system,
refer to custom scripts that are triggered by specified necessary actions that also occur in a
repository. Hooks can run either on the client side or on the server side.

Pull requests are a common way for developers to notify and review each other's work
before it is merged into common code branches. A CI server provides a web interface to
review changes before adding them to the final project. If there are any problems with the
proposed changes, source code can be sent back to the developer to tweak as per the
organization's coding requirements.

[345]

DevOps and Solution Architecture Framework Chapter 12

As shown in the following diagram, server-side hooks in combination with the CI server
are used to increase the velocity of integration:

Commit to
Master

Continuous

]

Q
a4,

Integration
Pull Code Server

a

Developer

. . Run test cases for
Continuous testing integration, unit

and system test

Code repository

Stop deployment in case of build failure and send build report to the dev team

Automation of CI

As illustrated in the preceding diagram, using post-receive, you can direct new branches
to trigger tests on a CI server to verify that the new build integrates correctly and that all
units function correctly. The developer is notified of test failures and then knows to merge
their branch with the mainline only after the problems have been fixed. The developer can
build from their branch, test the changes there, and get feedback on how well their changes
work before deciding whether to merge their branch into the mainline.

Running integration and unit tests significantly reduces resistance when that branch is
merged into the mainline. Hooks can also be customized to test merges into the mainline
and block any merges that don't pass. Integration is all accomplished best with a CI server.

Jenkins is the most popular choice to build the CI server. However, you have to maintain
security and patching of the server by yourself. For native cloud options and managed
services, you can use managed code-build services such as AWS CodeBuild,

which eliminates the need for server administration and reduces costs significantly with

a pay-as-you-go model. The service scales as per your demand. Your team is empowered to
focus on pushing code and lets a service build all the artifacts.

[346]

DevOps and Solution Architecture Framework Chapter 12

As illustrated in the following diagram, you can host the Jenkins cluster in the AWS Elastic
Compute Cloud (EC2) server's fleet and auto-scale as per build load:

LILBLELIL)
Jenkins Master
i

L1111 L1111l L1111

LILBLILAL LILBLELEL LILBLELEL
Jenkins Slave Jenkin Slave Jenkin Slave

Auto Scaling of Jenkins CI servers

The Jenkins Master offload builds to the slave node instance in the case of overload. When
the load goes down, the Jenkins Master automatically terminates slave instances.

While a CI server helps you to build the right version of code from a source code repository
by collaborating across team members of the development team, code deployment helps
the team to get code ready for testing and release for end-user consumption. Let's learn
about code deployment in more detail.

Code deployment

Once your build is ready, you can use the Jenkins server for deployment or choose AWS
CodeDeploy as a cloud-native managed service. You can use other popular tools such as
Chef or Puppet to create a deployment script. The options for specifying a deployment
configuration are:

e OneAtATime: Only a single instance in a deployment group at a time installs a
new deployment. If a deployment on a given instance fails, the deployment
script will halt the deployment and return an error response detailing the
number of successful versus the number of failed installations.

e HalfAtATime: Half of the instances in the deployment group install a new
deployment. The deployment succeeds if half of the instances successfully install
the revision. HalfAtATime can again be a good option for production/test
environments where half of the instances are updated to a new revision, and the
other half remain available in production at an older revision.

[347]

DevOps and Solution Architecture Framework Chapter 12

¢ AllAtOnce: Each instance installs the latest revision available whenever it next
polls the deployment service. This option is best used for development and test
deployments as it has the potential to install a non-functioning deployment on
every instance in a deployment group.

e Custom: You can use this command to create a custom deployment configuration
specifying a fixed number of healthy hosts that must exist in a deployment group
at any given time. This option is a more flexible implementation of the
OneAtATime option. It allows for the possibility that a deployment may fail on
one or two instances that have become corrupt or are improperly configured.

The following diagram illustrates life cycle events during deployment:

Deployment
‘ Agem (Start) }—' ApplicationStop 4>{Download5undle

|End|
e

ValidateService Beforelnstall

ApplicationStart «——— AfterInstall 4—{ Install ‘

Deployment life cycle event

The deployment agent runs through a series of steps to execute a deployment. These steps
are called life cycle events. In the preceding diagram, steps highlighted in blue can be
controlled by human intervention; however, steps highlighted in green are automated and
controlled by a deployment agent. Here are more details about each step:

e ApplicationStop: In order to trigger a deployment, the first requirement is to
stop the application server so that traffic stops serving while files are copied.
Examples of software application servers are Tomcat, JBoss, or WebSphere
servers.

[348]

DevOps and Solution Architecture Framework Chapter 12

¢ DownloadBundle: After stopping the application server, the deployment agent
starts downloading a pre-built deployment bundle from an artifactory such as
JFrog Artifactory. The artifactory stores the application binary, which can be
deployed and tested for application before the new version launch.

e Beforelnstall: The deployment agent triggers pre-install steps such as creating a
backup of the current version and any required configuration update via a script.

e Install: In this step, deployment agents start the installation—for example,
running an Ant or Maven script for installation of a Java application.

o AfterInstall: The deployment agent triggers this step after your application
installation is completed. It may include updating post-installation configuration,
such as local memory setting and log parameters.

e ApplicationStart: In this step, the agent starts the application and notifies the
operations team of success or failure.

¢ ValidateService: The validation step fires after everything else is done and gives
you a chance to do a sanity check on the app. It includes steps such as
performing automated sanity tests and integration tests to verify if the new
version of the application has installed properly. The agent also sends a
notification to the team when testing is successful.

You have learned about various code deployment strategies and steps as an independent
component. However, to set up an automated CI/CD pipeline, you need to stitch all
DevOps steps together. Let's learn more about the code pipeline, which can help you to
build an end-to-end CI/CD pipeline.

Code pipeline

The code pipeline is about orchestrating everything together to achieve continuous
deployment (CD). In CD, the entire software release process is fully automated, including
build and deployment to the production release. Over some time with experiments, you
can set up a mature CI/CD pipeline in which the path to the production launch is
automated, thus enabling rapid deployment of features and immediate customer feedback.
You can use cloud-native managed services such as AWS CodePipeline to orchestrate the
overall code pipeline, or you can use the Jenkins server.

[349]

DevOps and Solution Architecture Framework Chapter 12

The code pipeline enables you to add actions to stages in your CI/CD pipeline. Each action
can be associated with a provider that executes the action. The code pipeline action's
categories and examples of providers are as follows:

Source: Your application code needs to be stored in a central repository with
version control called source code repositories. Some of the popular code
repositories are AWS CodeCommit, Bitbucket, GitHub, Concurrent Versions
System (CVS), Subversion (SVN), and so on.

Build: The build tool pulls code from the source code repository and creates an
application binary package. Some of the popular build tools are AWS CodeBuild,
Jenkins, Solano CI, and so on. Once the build is completed, you can store binaries
in an artifactory such as JFrog.

Deploy: The deployment tool helps you to deploy application binaries in the
server. Some popular deployment tools are AWS Elastic Beanstalk, AWS
CodeDeploy, Chef, Puppet, Jenkins, and so on.

Test: Automated testing tools help you to complete and perform post-
deployment validation. Some popular test validating tools are Jenkins,
BlazeMeter, Ghost Inspector, and so on.

Invoke: You can use an events-based script to invoke activities such as backup
and alert. Any scripting language such as a shell script, PowerShell, and Python
can be used to invoke various customized activities.

Approval: Approval is an important step in CD. You can either ask for manual
approval by an automated email trigger or approval can be automated from
tools.

In this section, you learned about various DevOps tools to manage the Software
Development Life Cycle (SDLC) such as a code editor, a repository, and build, test, and
deployment tools. As of now, you have learned about various DevOps techniques for each
SDLC phase. Let's learn more about applying best practices and anti-patterns.

[350]

DevOps and Solution Architecture Framework Chapter 12

Implementing DevOps best practices

While building a CI/CD pipeline, consider your need to create a project and add team
members to it. The project dashboard provides visibility to the code flow through the
deployment pipeline, monitoring the build, triggering alerts, and tracking application
activities. The following diagram illustrates a well-defined DevOps pipeline:

DevOps
Admin

[‘
Create Project & .'. Monitor the
add user - application
Authorized

User

Developer Code deployed
Commits the Changes are to
built and tested .
change Production

A4
Make the (—New ‘_L) 8

ideas, request
and bugs Customer

changes

CI/CD workflow best practice

Consider the following points while designing the pipeline:

Number of stages: Stages could be development, integration, system, user
acceptance, and production. Some organizations also include dev, alpha, beta,
and release stages.

Type of tests in each stage: Each stage can have multiple types of tests such as
unit tests, integration tests, system tests, UATSs, smoke tests, load tests, smoke
tests, and A/B tests at the production stage.

The sequence of a test: Test cases can be run in parallel or need to be in
sequence.

Monitoring and reporting: Monitor system defects and failures and send
notifications as failures occur.

Infrastructure provisioning: Methods to provision infrastructure for each stage.
Rollback: Define the rollback strategy to fall back to the previous version if
required.

Having a system that requires manual intervention where it's avoidable slows down your
process. So, automating your process using CD will accelerate your process.

[351]

DevOps and Solution Architecture Framework Chapter 12

Another common anti-pattern is keeping configuration values for a build inside of the code
itself, or even having developers use different tools in their build processes, which can lead
to inconsistent builds between developers. It takes lots of time and effort trying to
troubleshoot why particular builds work in one environment and not in others. To
overcome this, it is better to store build configurations outside of code. Externalizing these
configurations to tools which keeps them consistent between builds, enables better
automation, and allows your process to scale much more quickly. Not using a CD process
can lead to last-minute, middle-of-the-night rushes to get a build to work. Design your CD
process to fail fast, to reduce the likelihood of any last-minute surprises.

Nowadays, most applications are built as a web app and utilize a cloud platform. To apply
architecture best practice at each step of application development, the twelve-factor
methodology can be used, as recommended by The Twelve-Factor App (https://
12factor.net/), the twelve-factor methodology adopted by enterprises for end-to-end
development and delivery of web applications. This applies to all coding platforms
regardless of programming languages. You have learned details about each factor
throughout different chapters of the book.

Summary

In this chapter, you have learned about the key components of a strong DevOps practice,
which includes CI, CD, and continuous monitoring and improvement. The agility of CI/CD
can be achieved only by applying automation everywhere. To automate, you learned about
IaC and configuration management. You also looked at various automation tools such as
Chef, Puppet, and Ansible to automate configuration management.

As security is the priority, you learned about DevSecOps, which is DevOps in Security. CD
is one of the key aspects of DevOps. You learned about various deployment strategies,
including rolling, blue-green, and red-black deployment. Testing is another aspect of
ensuring the quality of your product, and you learned about the concept of continuous
testing in DevOps, and also, how A/B testing can help to improve the product by taking
direct feedback from a customer in the live environment.

[352]

https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/

DevOps and Solution Architecture Framework Chapter 12

You have learned about stages in a CI/CD pipeline. You have learned about the tools and
services that you can use and best practices that you can follow for a robust CI/CD pipeline.
You have learned how individual services work and also discussed how to integrate
services to build a sophisticated solution.

Until this point, you have learned about various aspects of solution architecture as every
organization has lots of data, and they put a great effort into getting an insight into their
data. In the next chapter, you will learn about how to collect, process, and consume data to
get a more in-depth insight.

[353]

13

Data Engineering and Machine
Learning

In the era of the internet and digitization, data is being generated everywhere with high
velocity and quantity. Getting insight from these huge amounts of data at a fast pace is
challenging. We need to innovate continuously to ingest, store, and process this data to
derive business outcomes.

With the convergence of many cloud, mobile, and social technologies, advancements in
many fields such as genomics and life sciences are growing at an ever-increasing rate.
Tremendous value is found in mining this data for more insight. A fundamental difference
between streaming systems and batch systems is the requirement to process unlimited data.
Modern stream processing systems need to produce continual results at low latency on data
with high and variable input rates.

The concept of big data is more than just the collection and analysis of the data. The actual
value for organizations in their data is when it can be used to answer questions and used to
create competitive advantages for the organization. Not all big data solutions must end in
visualization. Many solutions such as Machine Learning (ML) and other predictive
analytics feed these answers programmatically into other software or applications, which
extract the information and respond as designed.

As with most things, getting faster results costs more, and big data is no exception. Some
answers might not be needed immediately, and so the latency and throughput of the
solution can be flexible enough to take hours to be completed. Other responses, such as in
the fields of predictive analytics or ML, may be needed as soon as the data is available.

Data Engineering and Machine Learning Chapter 13

In this chapter, you will learn about the following topics to handle and manage your big
data and ML needs:

e What is big data architecture?

¢ Designing for big data

¢ Data ingestion

¢ Data storage

¢ Data processing and analytics

e Data visualization

¢ The Internet of Things (IoT)

e What is ML?

¢ Data science and ML

¢ ML model overfitting versus underfitting
e Supervised and unsupervised ML model

By the end of this chapter, you will learn about how to design big data and analytics
architecture. You will learn different steps of the big data pipeline including data ingestion,
storage, processing, and visualization. You will learn about the basics of ML and model
evaluation techniques.

What is big data architecture?

The sheer volume of collected data can cause problems. With the accumulation of more and
more data, managing and moving the data along with its underlying big data infrastructure
becomes increasingly difficult. The rise of cloud providers has facilitated the ability to move
applications to the data. Multiple sources of data result in increased volumes, velocity, and
variety. The following are some common computer-generated data sources:

¢ Application server logs: Application logs and games

e Clickstream logs: From website clicks and browsing

e Sensor data: Weather, water, wind energy, and smart grids
¢ Images and videos: Traffic and security cameras

Computer-generated data can vary from semi-structured logs to unstructured binaries. This
data source can produce pattern-matching or correlations in data that generate
recommendations for social networking and online gaming in particular. You can also use
computer-generated data to track applications or service behavior such as blogs, reviews,
emails, pictures, and brand perceptions.

[355]

Data Engineering and Machine Learning Chapter 13

Human-generated data includes email searches, natural language processing, sentiment
analysis on products or companies, and product recommendations. Social graph analysis
can produce product recommendations based on your circle of friends, jobs you may find
interesting, or even reminders based on your circle of friend's birthdays, anniversaries, and
SO on.

In data architecture, the general flow of a significant data pipeline starts with data and ends
with insight. How you get from start to finish depends on a host of factors. The following
diagram illustrates a data workflow pipeline that needs to design for data architecture:

:]’!I!II|’F €:£>5Inmgm.

Latency

Cost

Big data pipeline for data architecture design

As shown in the preceding diagram, the standard workflow of the big data pipeline
includes the following steps:

1. Data is collected (ingested) by an appropriate tool.
2. The data is stored in a persistent way.

3. The data is processed or analyzed. The data processing/analysis solution takes
the data from storage, performs operations, and then stores the processed data
again.

[356]

Data Engineering and Machine Learning Chapter 13

4. The data is then used by other processing/analysis tools or by the same tool again
to get further answers from the data.

5. To make answers useful to business users, they are visualized by using a
business intelligence (BI) tool or fed into an ML algorithm to make future
predictions.

6. Once the appropriate answers have been presented to the user, this gives them
insight into the data that they can then take and use to make further business
decisions.

The tools you deploy in your pipeline determine your time-to-answer, which is the latency
between the time your data was created and when you can get insight from it. The best way
to architect data solutions while considering latency is to determine how to balance
throughput with cost, because a higher performance and subsequently reduced latency
usually results in a higher price.

Designing big data processing pipelines

One of the critical mistakes many big data architectures make is trying to handle multiple
stages of the data pipeline with one tool. A fleet of servers handling the end-to-end data
pipeline, from data storage and transformation to visualization, may be the most
straightforward architecture, but it is also the most vulnerable to breakdowns in the
pipeline. Such tightly-coupled big data architecture typically does not provide the best
possible balance of throughput and cost for your needs.

It is recommended that big data architects decouple the pipeline. There are several
advantages to decoupling storage and processing in multiple stages in particular, including
increased fault tolerance. For example, if something goes wrong in the second round of
processing and the hardware dedicated to that task fails, you won't have to start again from
the beginning of the pipeline; your system can resume from the second storage stage.
Decoupling your storage from various processing tiers gives you the ability to read and
write to multiple data stores.

The following diagram illustrates various tools and processes to consider when designing a
big data architecture pipeline:

[357]

Data Engineering and Machine Learning Chapter 13

Collect !/ Lﬁ?::e&> Visualize

INear Real-Time 1

IPrucess and Move Data

r___-_______‘ ____________ -I J S S S S S T S - S D D S S S S S S S S S
|Data Import | [Transactional API &0On | Near Real-Time | |Bussiness Intelligence & |
: : IDemand Mode I : |Data Visualization |
| I
:Webfhpp Sarvers : I :Harloap Ecosystem : : :
|l : IPerfurmanoe : : :Elastim serach Analytics
Message Queuning | :I of Thi IData warehousing AR 1

| " : nternet ng i 1

I . i | !

:Near Real-Time | :S h IMa:hhne e i

| |>eard i

| |

——————————— 4 | IElastic Search Analytics |

1

, 1

! IErnbed Dashboards :

1

1

I

1

I

1

I

I

1

I

i

I

1
1
1
1
1
1
I
1
1
1
1
1
1
I
INosaL o
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

IRDBMS {Analytics for Java Apps

| 1

| |

|Object Storage :Adho: Analytics

I

I | TR R A i

Tools and processes for big data architecture design

The things you should consider when determining the right tools for your big data
architectures include the following;:

e The structures of your data

¢ The maximum acceptable latency

e The minimum acceptable throughput

e The typical access patterns of your system's end users

Your data structure has an impact on both the tools you use to process it and where you
store it. The ordering of your data and the size of each object you're storing and retrieving
are also essential considerations. The time-to-answer is determined by how your solution
weighs latency/throughput and cost.

[358]

Data Engineering and Machine Learning Chapter 13

User access patterns are another important component to consider. Some jobs require the
rapid joining of many related tables regularly, and other jobs require daily or less frequent
use of stored data. Some jobs require a comparison of data from a wide range of data
sources, and other jobs pull data from only one unstructured table. Knowing how your end
users will most often use the data will help you determine the breadth and depth of your
big data architecture. Let's dive deep into each process and the tools involved in big data
architecture.

Data ingestion

Data ingestion is the act of collecting data for transfer and storage. There are lots of places
that data can come from. Predominantly, data ingestion falls into one of the categories from
databases, streams, logs, and files. Among these, databases are the most predominant.
These typically consist of your main upstream transactional systems that are the primary
data storage for your applications. They take on both relational and non-relational flavors,
and there are several techniques for extracting data out of them.

Streams are open-ended sequences of time-series data such as clickstream data from
websites or IoT devices, usually published into an API that we host. Logs get generated by
applications, services, and operating systems. A data lake is a great place to store all of
those for centralized analysis. Files come from self-hosted file systems or via third-party
data feeds via FTP or APIs. As shown in the following diagram, use the type of data your
environment collects and how it is collected to determine what kind of ingestion solution is
ideal for your needs:

~
‘ Transactional: ‘ Apps Server

Read/Write <:::> ‘ Database ‘
Database Web Server

J

-

Devices
Files Mobile Apps Browser |:"> Cloud Storage
Sensor loT
j

Fluentd

‘ Stream ‘ Sqoop ‘—:>

Stream Storage

plie

Type of data ingestion

[3591]

Data Engineering and Machine Learning Chapter 13

As shown, transactional data must be able to store and retrieve data quickly. End users
need quick and straightforward access to the data, which makes app and web servers the
ideal ingestion methods. For the same reasons, databases such as NoSQL and Relational
Database Management Systems (RDBMS) are usually the best solutions for these kinds of
processes.

Data transmitted through individual files is typically ingested from connected devices. A
large amount of file data does not require fast storage and retrieval compared to
transactional data. For file data, often transfer is one-way, where data is produced by
multiple resources and ingested into a single object or file storage for later use.

Stream data such as clickstream logs should be ingested through an appropriate solution
such as an Apache Kafka or Fluentd. Initially, these logs are stored in stream storage
solutions such as Kafka, so they're available for real-time processing and analysis. Long-
term storage of these logs is best in a low-cost solution such as object storage.

Streaming storage decouples your collection system (producers) from the processing
system (consumers). It provides a persistent buffer for your incoming data. The data can be
processed and you can pump the data at a rate dependent on your needs.

Technology choices for data ingestion

Let's looks at some popular open source tools for data ingestion and transfer:

e Apache DistCp: DistCp stands for distributed copy and is part of the Hadoop
ecosystem. The DistCp tool is used to copy large data within a cluster or between
clusters. DistCp achieves the efficient and fast copying of data by utilizing
parallel processing distribute capability which comes with MapReduce. It
distributes directories and files into map tasks to copy files partitions from source
to target. DistCp also does error handling, recovery, and reporting across
clusters.

[360]

Data Engineering and Machine Learning Chapter 13

e Apache Sqoop: Sqoop is also part of the Hadoop ecosystem project and helps to
transfer data between Hadoop and relational data stores such as RDBMS. Sqoop
allows you to import data from a structured data store into HDFS and to export
data from HDFS into a structured data store. Sqoop uses plugin connectors to
connect to relational databases. You can use the Sqoop extension API to build a
new connector, or you can use one of the included connectors that support data
exchange between Hadoop and common relational database systems.

¢ Apache Spark Streaming: Spark Streaming helps to ingest live data streams with
high throughput and in a fault-tolerant, scalable manner. Spark Streaming
divides the incoming data streams into batches before sending them to the Spark
engine for processing. Spark Streaming uses DStreams, which are sequences of
resilient distributed datasets (RDDs).

¢ Apache Kafka: Kafka is one of the most popular open source streaming
platforms that helps you publish and subscribe to a data stream. A Kafka cluster
stores a recorded stream in a Kafka topic. A producer can publish data in a Kafka
topic and consumers can take the outputted data stream by subscribing to the
Kafka topic.

¢ Apache Flume: Flume is open source software and is mainly used to ingest a
large amount of log data. Apache Flume collects and aggregates data to Hadoop
reliably and in a distributed manner. Flume facilitates streaming data ingestion
and allows analytics.

¢ Apache Flink: Flink is another open source platform for streaming data and
batch data processing. Flink consists of a streaming dataflow engine that can
process bounded and unbounded data stream. The bounded data stream has a
defined start and end, while an unbounded data stream has a start but no end.
Flink can perform batch processing as well on its streaming engine and supports
batch optimizations.

There are more open source projects available for streaming, such as Apache Storm and
Apache Samza, to provide a means of reliably processing unbounded streams of data.

[361]

Data Engineering and Machine Learning Chapter 13

Ingesting data to the cloud

Public cloud providers such as AWS provide an array for big data services to store and
process data on a large scale. The following are some options to move your data to the
AWS cloud and utilize the scalability offered by the cloud provider:

e AWS Direct Connect: AWS Direct Connect provides up to 10 Gbps of private
connectivity between the AWS cloud and your data center. A dedicated network
connection reduces network latency and increases bandwidth throughput. It
provides more reliable network speed compared to internet connections where
data has to hop through multiple routers. Direct Connect creates a cross-connect
between the router managed either by you or a Direct Connect partner,
depending on whether you are co-located in one of AWS Direct Connect
locations, and the router in that location that AWS owns. The circuit itself
provides both a public and a private Virtual Interface (VIF). You can use the
private VIF to directly access the resources running within your Virtual Private
Cloud (VPC) on AWS, and the public VIF to access the public endpoints for AWS
services such as Amazon Simple Storage Service (S3).

e AWS Snowball: If you want to transfer a large amount of data, such as hundreds
of terabytes (TB) or petabytes (PB) to the cloud, it could take years over the
internet. AWS Snowball provides a tamper-proof 80 TB storage appliance that
can transfer a large amount of data. It works like a large hard disk that you can
plug in to your on-premise data storage server, load all data, and ship it to AWS.
AWS will place your data in a designated location in the cloud storage. AWS
Snowball has other flavors, such as Snowball Edge, which comes with compute
power along with 100 TB of storage and fulfills the use case of handling data in a
remote location, such as on a cruise ship or an oil ring. It is like a small data
center where you can load data and perform some analytics using the built-in
compute functionality. Data can be loaded to the cloud as soon as the appliance
comes online. If you have petabytes of data, then you can use Snowmobile,
which is a physical 45-foot shipping container with which you can transfer 100
PB of data in one go from your data center to the AWS cloud.

[362]

Data Engineering and Machine Learning Chapter 13

¢ Amazon Kinesis: Amazon Kinesis offers three capabilities. The first is a place to
store a raw data stream to perform any downstream processing of the records
that you desire. To facilitate transferring these records into common analytic
environments such as Amazon S3, ElasticSearch, Redshift, and Splunk, it offers
the Amazon Kinesis Firehose service. Firehose will automatically buffer up all
the records in the stream and flush out to the target as a single file or set of
records based on either a time or data-size threshold that you can configure, or
whichever is reached first. If you wish to perform some window-based analytics
on the records in the stream, use Kinesis Analytics. Kinesis Analytics allows you
to flow streams together and perform SQL operations over the records based on
the time windows that you configure. The output can subsequently flow into
further streams you create, so you can build an entire serverless streaming
pipeline.

e AWS Data Migration Service (DMS): AWS DMS makes it easy to securely
migrate or replicate your databases and data warehouses to AWS. In DMS, you
can create a data migration task, which will be connected to on-premise data via
a source endpoint and uses AWS-provided storage such as RDS and Amazon S3
as the target endpoint. DMS supports full data dumps and ongoing change data
capture (CDC). DMS also supports homogeneous (MySQL-to-MySQL) and
heterogeneous (MySQL-to-Amazon-Aurora) database migrations.

AWS provides more tools such as AWS Data Sync for continuous file transfer to AWS from
on-premise and AWS Transfer for SFTP to ingest data from the SFTP server securely. As
you ingest the data, it needs to be put in suitable storage to fulfill the business needs. Let's
learn more about techniques to choose the right storage and the available storage choices.

[363 1]

Data Engineering and Machine Learning Chapter 13

Storing data

One of the most common mistakes made when setting up storage for a big data
environment is using one solution, frequently an RDBMS, to handle all of your data storage
requirements. You will have many tools available, but none of them are optimized for the
task they need to complete. One single solution is not necessarily the best for all of your
needs; the best solution for your environment might be a combination of storage solutions
that carefully balance latency with the cost. An ideal storage solution uses the right tool for
the right job. Choosing a data store depends upon various factors:

¢ How structured is your data? Does it adhere to a specific, well-formed schema,
as is the case with Apache web logs (logs are generally not well structured and so
not suitable for relational databases), standardized data protocols, and
contractual interfaces? Is it completely arbitrary binary data, as in the cases of
images, audio, video, and PDF documents? Or, is it semi-structured with a
general structure but with potentially high variability across the records, as in the
case of JSON or CSV?

¢ How quickly does new data need to be available for querying (temperature)? Is
it a real-time scenario, where decisions are made as new records stream in, such
as with campaign managers making adjustments based on conversion rates or a
website making product recommendations based on user-behavior similarity? Is
it a daily, weekly, or monthly batch scenario, such as in model training, financial
statement preparation, or product performance reporting? Or is it somewhere in
between, such as with user engagement emails, where it doesn't require real-time
action, but you can have a buffer of a few minutes or even a few hours between
the user action and the touchpoint?

¢ The size of the data ingest: Is the data ingested record by record as data comes
in, such as with JSON payloads from REST APIs that measure at just a few KBs at
best? Is it a large batch of records arriving all at once, such as with system
integrations and third-party data feeds? Or is it somewhere in between, such as
with a few micro-batches of clickstream data aggregated together for more
efficient processing?

¢ Total volume of data and its growth rate: Are you in the realm of GBs and TBs,
or do you intend to store PBs or even exabytes (EB)? How much of this data is
required for your specific analytics use cases? Do the majority of your queries
only require a specific rolling window of time? Or, do you need a mechanism to
query the entirety of your historical dataset?

[364]

Data Engineering and Machine Learning Chapter 13

e What the cost will be to store and query the data in any particular
location: When it comes to any computing environment, we generally see a
triangle of constraints between performance, resiliency, and low cost. The better
the performance and the higher the resilience that you want your storage to have,
the more expensive it will tend to be. You may wish to have quick queries over
petabytes of data, which is the kind of environment that Redshift can provide,
but decide to settle on querying TBs of data compressed in the Parquet format
using Athena to meet your cost requirements.

Finally, what type of analytic queries will run against the data? Will it be powering a
dashboard with a fixed set of metrics and drill-down? Will it participate in large numerical
aggregations rolled up by various business dimensions? Or, will it be used for diagnostics,
leveraging string tokenization for full-text searching and pattern analysis? The following
diagram combines multiple factors related to your data and the storage choice associated
with it:

Request rate
High Low
Cost/ GB

Low
/ NoSQL
N

g
23 ——
°F -(H Search ,,>
— T
" In-memory) ™~
High — Warehouse)
Hot data Cold data
Data volume
Low High
Latency g

Understanding data storage

When you determine all characteristics of your data and understand the data structure, you
can then assess which solution you need to use for your data storage. Let's learn about the
various solutions for storing data.

[365]

Data Engineering and Machine Learning Chapter 13

Technology choices for data storage

As we discussed, a single tool can't do everything. You need to use the right tool for the
right job, and the data lake enables you to build a highly configurable big data architecture
to meet your specific needs. Business problems are far too broad, deep, and complex for
one tool to solve everything, and this is especially true in the big data and analytics space.

For example, hot data will need to be stored and processed in-memory, so caches or in-
memory databases like Redis or SAP Hana are appropriate. AWS offers the ElastiCache
service, providing a managed Redis or Memcached environment. NoSQL databases are
ideal when facing high velocity but small-sized records, for example, user-session
information or IoT data. NoSQL databases are also useful for content management to store
data catalogs.

Structured data stores

Structured data stores have been around for decades and are the most familiar technology
choice when it comes to storing data. Most of the transactional databases such as Oracle,
MySQL, SQL Server, and PostgreSQL are row-based due to dealing with frequent data
writes from software applications. Organizations often repurpose transactional database for
reporting purposes, where frequent data reads are required, but much fewer data writes.
Looking at high data-read requirements, there is more innovation coming into an area of
query on structured data stores, such as the columnar file format, which helps to enhance
data read performance for analytics requirements.

Row-based formats store the data in rows in a file. Row-based writing is the fastest way to
write the data to the disk but it is not necessarily the quickest read option because you have
to skip over lots of irrelevant data. Column-based formats store all the column values
together in the file. This leads to better compression because the same data types are now
grouped together. It also typically provides better read performance because you can skip
columns that are not required.

Let's look at common choices for the structured data store. Take an example where you
need to query the total number of sales in a given month from the order table, which has
fifty columns. In a row-based architecture, the query will scan the entire table with all fifty
columns, but in columnar architecture, the query will just scan the order sales column, thus
improving data query performance. Let's look into more details about relational databases,
focusing on transaction data and data warehousing to handle data analytics needs.

[366]

Data Engineering and Machine Learning Chapter 13

Relational databases

RDBMS is more suitable for Online Transaction Processing (OLTP) applications. Some
popular relational databases are Oracle, MSSQL, MariaDB, PostgreSQL, and so on. Some of
these traditional databases have been around for decades. Many applications, including e-
commerce, banking, and hotel booking, are backed by relational databases. Relational
databases are very good at handling transaction data where complex joint queries between
tables are required. Looking at transaction data needs, the relational database should
adhere to the Atomicity, Consistency, Isolation, Durability (ACID) principles, as follows:

e Atomicity: Atomicity means the transaction will executed fully from end to end,
and, in the case of any error, the entire transaction will roll back.

¢ Consistency: Consistency means as soon as transactions are completed, all data
should be committed to the database.

e Isolation: Isolation requires that multiple transactions can run concurrently in
isolation without interfering with each other.

¢ Durability: In case of any interruption, such as a network or power failure, the
transaction should able to resume the last known state.

Often, data from the relational databases are offloaded to data warehousing solutions for
reporting and aggregation purposes. Let's learn more about data warehousing.

Data warehousing

Data warehouse databases are more suitable for Online Analytical Processing

(OLAP) applications. Data warehouses provide fast aggregation capability over vast
volumes of structured data. While these technologies, such as Amazon Redshift, Netezza,
and Teradata, are designed to execute complex aggregate queries quickly, they are not
optimized for high volumes of concurrent writes. So, data needs to be loaded in batches,
preventing warehouses from being able to serve real-time insights over hot data.

Modern data warehouses use a columnar base to enhance query performance. Examples of
this include Amazon Redshift, Snowflake, and Google Big Query. These data warehouses
provide very fast query performance due to columnar storage and improve I/O efficiency.
In addition to that, data warehouse systems such as Amazon Redshift increase query
performance by parallelizing queries across multiple nodes and take advantage of massive
parallel processing (MPP).

[367]

Data Engineering and Machine Learning Chapter 13

Data warehouses are central repositories that store accumulations of data from one or
multiple sources. They store current and historical data used to help create analytical
reports for business data analytics. However, data warehouses store data centrally from
multiple systems but they can not be treated as a data lake. Data warehouses handle only
structured relational data while data lakes work with both structured relational data and
unstructured data such as JSON, logs, and CSV data.

Data warehouse solutions such as Amazon Redshift can process petabytes of data and
provide decoupled compute and storage capabilities to save costs. In addition to columnar
storage, Redshift uses data encoding, data distribution, and zone maps to increase query
performance. More traditional row-based data warehousing solutions include Netezza,
Teradata, and Greenplum.

NoSQL databases

NoSQL databases such as Dynamo DB, Cassandra, and Mongo DB address the scaling and
performance challenges that you often experience with a relational database. As the name
suggests, NoSQL means a non-relational database. NoSQL databases store data without an
explicit and structured mechanism to link data from different tables (no joins, foreign keys,
and with normalization enforced).

NoSQL utilizes a number of data models including columnar, key-value, search, document,
and graph. NoSQL databases provide scalable performance, high availability, and
resilience. NoSQL typically does not enforce strict schema and every item can have an
arbitrary number of columns (attributes), which means one row can have four columns,
while another row can have ten columns in the same table. The partition key is used to
retrieve values or documents containing related attributes. NoSQL databases are highly
distributed and can be replicated. NoSQL databases are durable and don't experience
performance issues when highly available.

[368]

Data Engineering and Machine Learning

Chapter 13

SQL versus NoSQL databases

SQL databases have been around for decades and most of us are probably already very
familiar with relational databases. Let's learn some significant differences between SQL and
NoSQL databases:

Properties

SQL Databases

NoSQL Databases

In SQL databases, the relational model
normalizes data into tables containing
rows and columns. A schema includes

NoSQL databases do not enforce a
schema. A partition key is
commonly used to retrieve values

effort requires relational tables to span
across distributed systems such as

performing data sharding.

Data model . . |from column sets. It stores semi-
tables, number of columns, relationships
. structured data such as JSON,
between tables, index, and other
XML, or other documents such as
database elements. s
data catalogs and file indexes.
... To achieve horizontal scaling and
SQL-based traditional RDBMS support s
. . . . data model flexibility, NoSQL
Transaction |and are compliant with the transactional
data properties of ACID databases may trade some ACID
] properties of traditional RDBMS.
SQL-based RDBMS were used to
optimize storage when the storage was
expensive and to minimize the footprint |For NoSQL, performance depends
on disk. For traditional RDBMS, upon the underlying hardware
Performance|performance has mostly relied on the cluster size, network latency, and
disk. To achieve performance query how the application is calling the
optimizations, index creation and database.
modifications to the table structure are
required.
SQL-based RDBMS d atabases are easiest NoSQL databases are designed to
to scale vertically with high . .
configuration hardware. The additional scale horizontally by using
Scale) distributed clusters of low-cost

hardware to increase throughput
without impacting latency.

Depending upon the of your data, there are various categories of NoSQL data stores that
exists to solve a specific problem. Let's understand the types of NoSQL databases.

[369 1]

Data Engineering and Machine Learning Chapter 13

Types of NoSQL data store

Following are the major NoSQL databases types:

¢ Columnar databases: Apache Cassandra and Apache HBase are the popular
columnar databases. The columnar data store helps you to scan a particular
column when querying the data, rather than scanning the entire row. If an item
table has 10 columns with one million rows and you want to query the number of
a given item available in inventory, then the columnar database will just apply
the query to the item quantity column rather than scanning the entire table.

¢ Document databases: Some of the most popular document databases are
MongoDB, Couchbase, MarkLogic, Dynamo DB, and Cassandra. You can use a
document database to store semi-structured data in JSON and XML formats.

¢ Graph databases: Popular graph database choices include Amazon Neptune,
JanusGraph, TinkerPop, Neo4j, OrientDB, GraphDB, and GraphX on Spark. A
graph database stores vertices and links between vertices called edges. Graphs
can be built on both relational and non-relational databases.

¢ In-memory key-value stores: Some of the most popular in-memory key-value
stores are Redis and Memcached. They store data in memory for read-
heavy applications. Any query from an application first goes to an in-memory
database and, if the data is available in the cache, it doesn't hit the master
database. The in-memory database is good for storing user-session information,
which results in complex queries and frequently requests data such as user
profiles.

NoSQL has many use cases, but to build a data search you need to index all your data. Let's
learn more about search data stores.

Search data stores

The Elasticsearch service is one of the most popular search engines for big data use cases
such as clickstream and log analysis. Search engines work well for warm data that can be
queried in an ad hoc fashion across any number of attributes, including string tokens.
Elasticsearch is a very popular search engine. General binary or object storage is
appropriate for files that are unstructured, not indexable, and otherwise opaque without
specialized tools that understand their format.

[370]

Data Engineering and Machine Learning Chapter 13

Amazon Elasticsearch Service manages the administration of Elasticsearch clusters and
provides API access. It also provides Kibana as a visualization mechanism to conduct a
search on indexed data stores in the Elasticsearch cluster. AWS manages capacity, scaling,
and patching of the cluster, removing any operational overhead. Log search and analysis is
a popular big data use case where Elasticsearch helps you to analyze log data from
websites, servers fleet, IoT sensors, and so on. Elasticsearch is utilized by a large variety of
applications in industry such as banking, gaming, marketing, application monitoring,
advertisement technology, fraud detection, recommendations, and IoT.

Unstructured data stores

When you look at the requirements for an unstructured data store, it seems that Hadoop is
a perfect choice because it is scalable, extensible, and very flexible. It can run on

consumer hardware, has a vast ecosystem of tools, and appears to be cost effective to run.
Hadoop uses a master-and-child-node model, where data is distributed between multiple
child nodes and the master node co-ordinates jobs for running queries on data. The Hadoop
system is based on massively parallel processing (MPP), which makes it fast to perform
queries on all types of data, whether it is structured or unstructured.

When a Hadoop cluster is created, each child node created from the server comes with a
block of the attached disk storage called a local Hadoop Distributed File System (HDFS)
disk store. You can run the query against stored data using common processing
frameworks such as Hive, Ping, and Spark. However, data on the local disk persists only
for the life of the associated instance.

If you use Hadoop's storage layer (that is, HDFS) to store your data, then you are coupling
storage with compute. Increasing storage space means having to add more machines,
which increases your compute capacity as well. For maximum flexibility and cost
effectiveness, you need to separate compute and storage and scale them both
independently. Overall object storage is more suited to data lakes to store all kinds of data
in a cost-effective and performant manner. Cloud-based data lakes backed by object storage
provide flexibility to decouple compute and storage. Let's learn more about data lakes.

Data lakes

A data lake is a centralized repository for both structured and unstructured data. The data
lake is becoming a popular way to store and analyze large volumes of data in a centralized
repository. It stores data as is, using open source file formats to enable direct analytics. As
data can be stored as is in its current format, you don't need to convert data into a
predefined schema, which increases the speed of data ingestion. As illustrated in the
following diagram, the data lake is a single source of truth for all data in your organization:

[371]

Data Engineering and Machine Learning Chapter 13

Business Intelligent Machine learning
8
— 0
DQ Queries Big Data
Processing

[Catalog }

/ / Data Lake \ LY

AY

S898SS RO

OLTP ERP

OB Device Web Sensors Social

Object store for data lake

The following are the benefits of a data lake:

e Data ingestion from various sources: Data lakes let you store and analyze data
from various sources such as relational, non-relational database, and streams in
one centralized location for a single source of truth. This answers questions such
as why is the data distributed in many locations? and where is the single source of
truth?

¢ Collecting and efficiently storing data: A data lake can ingest any kind of data
structure, including semi-structured and unstructured data without the need of
any schema. This answers questions such as how can I ingest data quickly from
various sources and in various formats, and store it efficiently at scale?

e Scale up with the volume of generated data: Data lakes allow you to separate
the storage layer and compute layer to scale each component separately. This
answers questions such as how can I scale up with the volume of data generated?

[372]

Data Engineering and Machine Learning Chapter 13

e Applying analytics to data from different sources: With a data lake, you can
determine schema on read and create a centralized data catalog on data collected
from various resources. This enables you to perform quick ad hoc analysis. This
answers questions such as is there a way I can apply multiple analytics and processing
frameworks to the same data?

You need an unlimited scalable data storage solution for your data lake. Decoupling your
processing and storage provides a significant number of benefits, including the ability to
process and analyze the same data with a variety of tools. Although this may require an
additional step to load your data into the right tool, using Amazon S3 as your central data
store provides even more benefits over traditional storage options.

The beauty of the Data Lake is that you are future-proofing your architecture. Twelve
months from now, there may be new technology you want to use. With your data in the
data lake, you can insert this new technology into your workflow with minimal overhead.
By building modular systems in your big data processing pipeline, with common object
storage such as Amazon S3 as the backbone, you can replace specific modules when they
become obsolete or when a better tool becomes available.

One tool can not do everything. You need to use the right tool for the right job, and data
lakes enable you to build a highly configurable big data architecture to meet your specific
needs. Business problems are far too broad, deep, and complex for one tool to solve
everything, and this is especially true in the big data and analytics space.

Processing data and performing analytics

Data analytics is the process of ingesting, transforming, and visualizing data to discover
useful insights for business decision-making. Over the previous decade, more data is
collected and customers are looking for greater insight into their data. These customers also
wanted this insight in the least amount of time, and sometimes even in real time. They
wanted more ad hoc queries to answer more business questions. To answer these questions,
customers needed more powerful and efficient systems.

Batch processing typically involves querying large amounts of cold data. In batch
processing, it may take hours to get answers to business questions. For example, you may
use batch processing to generate a billing report at the end of the month. Stream processing
in real time typically involves querying small amounts of hot data and it takes only a short
amount of time to get answers. MapReduce-based systems such as Hadoop are examples of
platforms that support the batch jobs category. Data warehouses are examples of platforms
that support the query engine category.

[373]

Data Engineering and Machine Learning Chapter 13

Streaming data processing activities ingest a sequence of data and incrementally update
functions in response to each data record. Typically, they ingest continuously produced
streams of data records, such as metering data, monitoring data, audit logs, debugging
logs, website clickstreams, and location-tracking events for devices, people, and physical
goods.

The following diagram illustrates a data lake pipeline for processing, transforming, and
visualizing data using the AWS cloud tech stack:

Data Source Amazon S3 Amazon EMR Amazon S3 RedShift Amazon
Raw Processed Quicksight
Da‘a Da‘ta
A
v +

Amazon Amazon
Athena Athena

Data lake ETL pipeline for big data processing

Here, the Extract, Transform, Load (ETL) pipeline uses Amazon Athena for ad hoc
querying of data stored in Amazon S3. The data ingested from various data sources (for
example, web application servers) generate log files that persist into S3. These files are then
transformed and cleansed into a set form required for meaningful insights using

Amazon Elastic MapReduce (EMR) and loaded into Amazon S3.

These transformed files are loaded into Amazon Redshift using the coOpY command and
visualized using Amazon QuickSight. Using Amazon Athena, you can query the data
directly from Amazon S3 when the data is stored and also after transformation (that is, with
aggregated datasets). You can visualize the data in Amazon QuickSight. You can easily
query these files without changing your existing data flow.

Let's looks at some popular tools for data processing.

[374]

Data Engineering and Machine Learning Chapter 13

Technology choices for data processing and
analysis

Following are some of the most popular data processing technologies, which help you to
perform transformation and processing for a large amount of data:

e Apache Hadoop uses a distributed processing architecture in which a task is
mapped to a cluster of commodity servers for processing. Each piece of work
distributed to the cluster servers can be run or re-run on any of the servers. The
cluster servers frequently use HDFS to store data locally for processing. In the
Hadoop framework, Hadoop takes a big job, splits it into discrete tasks, and
process them in parallel. It allows for massive scalability across an enormous
number of Hadoop clusters. It's also designed for fault tolerance, where each of
the worker nodes periodically reports its status to a master node, and the master
node can redistribute work from a cluster that doesn't respond positively. Some
of the most popular frameworks used with Hadoop are Hive, Presto, Pig, and
Spark.

e Apache Spark is an in-memory processing framework. Apache Spark is
a massively parallel processing system with different executors that can take
apart a Spark job and run tasks in parallel. To increase the parallelism of a job,
add nodes to the cluster. Spark supports batch, interactive, and streaming data
sources. Spark uses directed acyclic graphs (DAGs) for all the stages during the
execution of a job. The DAGs can keep track of the transformations of your data
or lineage of the data during the jobs and efficiently minimizes the I/O by storing
the DataFrames in memory. Spark is also partition-aware to avoid network-
intensive shuffles.

¢ Hadoop User Experience (HUE) enables you to run queries and scripts on your
cluster through a browser-based user interface instead of the command line.
HUE provides the most common Hadoop components in a user interface. It
enables browser-based viewing and tracking of Hadoop operations. Multiple
users can access the cluster via Hue's login portal, and administrators can
manage access manually or with LDAP, PAM, SPNEGO, OpenlD, OAuth, and
SAML2 authentication. HUE allows you to view logs in real time and provides a
metastore manager to manipulate Hive metastore contents.

[375]

Data Engineering and Machine Learning Chapter 13

e Pig is typically used to process large amounts of raw data before storing it in a
structured format (SQL tables). Pig is well suited to ETL operations such as data
validation, data loading, data transformation, and combining data from multiple
sources in multiple formats. In addition to ETL, Pig also supports relational
operations such as nested data, joins, and grouping. Pig scripts can use
unstructured and semi-structured data (such as web server logs or clickstream
logs) as input. In contrast, Hive always enforces a schema on input data. Pig
Latin scripts contain instructions on how to filter, group, and join data, but Pig is
not intended to be a query language. Hive is better suited to querying data. The
Pig script compiles and runs to transform the data based on the instructions in
the Pig Latin script.

e Hive is an open source data warehouse and query package that runs on top of a
Hadoop cluster. SQL is a very common skill that helps the team to make an easy
transition into the big data world. Hive uses a SQL-like language called Hive
Query language (HQL), which makes it easy to query and process data in a
Hadoop system. Hive abstracts the complexity of writing programs in a coding
language such as Java to perform analytics jobs.

e Presto is a Hive-like query engine but it is much faster. It supports the ANSI SQL
standard, which is easy to learn and the most popular skill set. Presto supports
complex queries, joins, and aggregation functions. Unlike Hive or MapReduce,
Presto executes queries in memory, which reduces latency and improves query
performance. You need to be careful while selecting the server capacity for
Presto, as it needs to have high memory. A Presto job will restart in the event of
memory spillover.

¢ HBase is a NoSQL database developed as a part of the open source Hadoop
project. HBase runs on HDFS to provide non-relational database capabilities for
the Hadoop ecosystem. HBase helps to store large quantities of data in columnar
format with compression. Also, it provides a fast lookup because large portions
of the data cache are kept in memory while cluster instance storage is still used.

¢ Apache Zeppelin is a web-based editor for data analytics built on top of the
Hadoop system, also known as Zeppelin Notebook. It uses the concept of an
interpreter for its backend language and allows any language to be plugged into
Zeppelin. Apache Zeppelin includes some basic charts and pivot charts. It's very
flexible in terms of any output from any language backend that can be
recognized and visualized.

[376]

Data Engineering and Machine Learning Chapter 13

¢ Ganglia is a Hadoop-cluster monitoring tool. However, you need to install
Ganglia on the cluster during launch. The Ganglia UI runs on the master node,
which you can see using an SSH tunnel. The Ganglia is an open source project
designed to monitor clusters without impact on their performance. Ganglia can
help to inspect the performance of the individual servers in your cluster and the
performance of clusters as a whole.

¢ JupyterHub is a multi-user Jupyter notebook. Jupyter notebooks are one of the
most popular tools among data scientists to perform data engineering and ML.
The JupyterHub notebook server provides each user with their Jupyter notebook
web-based IDE. Multiple users can use their Jupyter notebooks simultaneously to
write and execute code for exploratory data analytics.

e Amazon Athena is an interactive query service for running queries on Amazon
S3 object storage using standard ANSI SQL syntaxes. Amazon Athena is built on
top of Presto and extends ad hoc query capabilities as a managed service. The
Amazon Athena metadata store works like the Hive metadata store so that you
can use the same DDL statements from the Hive metadata store in Amazon
Athena. Athena is a serverless and managed service, which means all
infrastructure and software handling and maintenance is taken care of by AWS
and you can directly start running your query in the Athena web-based editor.

¢ Amazon Elastic MapReduce (EMR) is essentially Hadoop in the cloud. You can
utilize the Hadoop framework with the power of the AWS cloud using EMR.
EMR supports all the most popular open source frameworks including Apache
Spark, Hive, Pig, Presto, Impala, Hbase, and so on. EMR provides decoupled
compute and storage which means you don't have to always keep running a
large Hadoop cluster; you can perform data transformation and load results into
persistent Amazon S3 storage and shut down the server. EMR provides
autoscaling and saves you from the administrative overhead of installing and
updating servers with various software.

e AWS Glue is a managed ETL service, which helps in data processing, data
cataloging, and ML transformations to find duplicate records. AWS Glue Data
Catalog is compatible with the Hive data catalog and provides a centralized
metadata repository across a variety of data sources including relational
databases, NoSQL, and files. AWS Glue is built on top of a warm Spark cluster
and provides ETL as a managed service. AWS Glue generates code in PySpark
and Scala for common use cases, so that you are not starting from scratch to write
ETL code. Glue job-authoring functionality handles any error in the job and
provides logs to understand underlying permission or data formatting issues.
Glue provides workflow, which helps you to build an automated data pipeline
with simple drag and drop functionality.

[377]

Data Engineering and Machine Learning Chapter 13

Data analysis and processing are huge topics that warrant a book on their own. In this
section, you had a very high-level overview of popular and common tools used for data
processing. There are many more proprietary and open source tools available. As a solution
architect, you need to be aware of various tools available on the market to make the right
choice for your organization's use case.

To identify data insights, business analysts can create reports and dashboards and perform
ad hoc queries and analysis. Let's learn about data visualization in the next section.

Visualizing data

Data insights are used to answer important business questions such as revenue by
customer, profit by region, or advertising referrals by site, among many others. In the big
data pipeline, enormous amounts of data are collected from a variety of sources. However,
it is difficult for companies to find information about inventory per region, profitability,
and increases in fraudulent account expenses. Some of the data you continuously collect for
compliance purposes can also be leveraged for generating business.

The two significant challenges of BI tools are the cost of implementation and the time it
takes to implement a solution. Let's look at some technology choices for data visualization.

Technology choices for data visualization

Following are some of the most popular data visualization platforms, which help you to
prepare reports with data visualization as per your business requirements:

e Amazon QuickSight is a cloud-based BI tool for enterprise-grade data
visualizations. It comes with a variety of visualization graph presets such as a
line graphs, pie charts, treemaps, heat maps, histograms, and so on. Amazon
QuickSight has a data-caching engine known as Super-fast, Parallel, In-memory
Calculation Engine (SPICE), which helps to render visualizations quickly. You
can also perform data preparation tasks such as renaming and removing fields,
changing data types, and creating new calculated fields. QuickSight also
provides ML-based visualization insights and other ML-based features such as
auto forecast predictions.

[378]

Data Engineering and Machine Learning Chapter 13

¢ Kibana is an open source data visualization tool used for stream data
visualization and log exploration. Kibana offers close integration with
Elasticsearch and uses it as a default option to search for data on top of
the Elasticsearch service. Like other BI tools, Kibana also provides popular
visualization charts such as histograms, pie charts, and heat maps, and offers
built-in geospatial support.

¢ Tableau is one of the most popular BI tools for data visualization. It uses a visual
query engine, which is a purpose-built engine, used to analyze big data faster
than traditional queries. Tableau offers a drag and drop interface and the ability
to blend data from multiple resources.

e Spotfire uses in-memory processing for faster response times, which enables an
analysis of extensive datasets from a variety of resources. It provides the ability
to plot your data on a geographical map and share it on Twitter. With Spotfire
recommendations, it inspects your data automatically and makes suggestions
about how to best visualize it.

e Jaspersoft enables self-service reporting and analysis. It also offers drag and
drop designer capability.

e PowerBl is a popular BI tool provided by Microsoft. It provides self-service
analytics with a variety of visualization choices.

Data visualization is an essential and massive topic for solution architects. As a solution
architect, you need to be aware of the various tools available and make the right choice as
per your business requirements for data visualization. This section provided a very high-
level overview of popular data visualization tools.

As internet connectivity is increasing, there are small devices everywhere with small
memory and compute capacities. These devices connect various physical entities and there
is a need to collect and analyze data from millions of these connected devices. For example,
weather data collected from various sensors can be utilized to forecast weather for wind
energy and farming. Let's cover some more details about IoT, which is the growing global
network of small interconnected devices.

[379]

Data Engineering and Machine Learning Chapter 13

Understanding loT

IoT refers to a network ecosystem of physical devices that have an IP address and are
connected to the internet. While IoT devices are growing rapidly in number, growing with
them is the complexity of leveraging your IoT devices correctly. IoT helps organizations to
perform a variety of tasks such as predictive maintenance, monitoring connected buildings
and city systems, energy efficiency monitoring, and safeguarding manufacturing facilities,
among others. You need to ingest data from IoT sensors, store them for analysis either via
streaming data or stored data, and provide results quickly.

These are some of the most critical challenges to any IoT device architecture. You need to
ensure the security and management of devices. Cloud providers have managed service
offerings to achieve scalability to millions of devices. Let's look into AWS IoT offerings to
understand the working of IoT systems. Because IoT solutions can be complex and
multidimensional, you need to remove the complexity of implementing IoT in the business
and help customers to securely connect any number of devices to the central server.

The AWS cloud helps in processing and acting upon device data and reading and setting
device state at any time. AWS provides the infrastructure to scale as needed, so
organizations can gain insight into their IoT data, build IoT applications and services that
better serve their customers, and help move their businesses toward full IoT exploitation.
The following diagram illustrates the components of AWS IoT:

E AWS Cloud
loT <A
Greengrass B

@ A B .| ------ > loT Rules Engine 5
e]lB torage
| X | Solution

Authorization and

loT Device SDK Lo Message
Authentication Broker
A
]
\A T ~ + g
ans
(@) Device Shadows Application
Device Registry
AWS IoT

[380]

Data Engineering and Machine Learning Chapter 13

The following are details in each IoT component and how are they connected as shown in
the preceding diagram:

¢ IoT Greengrass: AWS IoT Greengrass is installed on edge devices and helps to
send IoT message to the AWS cloud.

e The IoT Device SDK: The AWS IoT Device SDK helps to connect IoT devices to
your application. The IoT Device SDK provides an API to connect and
authenticate devices to application. It helps to exchange messages between
device and AWS IoT cloud services using the MQTT or HTTP protocols. The IoT
Device SDK supports C, Arduino, and JavaScript.

¢ Authentication and authorization: AWS IoT facilitates mutual authentication
and encryption to exchange data with only authorized devices. AWS IoT uses
authentication mechanisms such as SigV4 and X.509 certificates. You can attach
authentication to all connected devices by attaching a certificate and handle
authorization remotely.

¢ IoT message broker: The message broker supports the MQTT and HTTP
protocols and establishes secure communication between IoT devices and cloud
services such as the AWS IoT Rules Engine, Device Shadows, and other AWS
services.

e The IoT Rules Engine: The IoT Rules Engine helps to setup managed data
pipelines for IoT data processing and analytics. The Rules Engine looks at IoT
data to perform streaming analytics and connect to other AWS storage services
such as Amazon S3, DynamoDB, ElasticSearch, and so on.

¢ Device Shadow Service: Device Shadow Service helps you to maintain a device's
status when it is offline due to loss of network connectivity in a remote area. As
soon as the device comes online, it can resume its state from Device Shadow. Any
application connected to the device can continue working by reading data from
the shadow using a RESTful APL

e Device Registry: The Device Registry helps to identify IoT devices and helps to
manage millions of devices at scale. The Registry stores device metadata such as
the version, manufacturer, and reading method (Fahrenheit versus Celsius), and
so on.

As of now, you've learned about various business analytics services that aim at answering
questions about past events. But businesses also need to answer questions about the
possibilities of future events, which is done using ML. Let's learn more details about ML.

[381]

Data Engineering and Machine Learning Chapter 13

What is ML?

Let's say your company wants to send marketing offers to potential customers for a new
toy launch and you have been tasked to come up with a system to identify whom to target
for the marketing campaign. Your customer base could be millions of users to which you
need to apply predictive analytics, and ML can help you to solve such a complex problem.

ML is about using technology to discover trends and patterns and compute mathematical
predictive models based on past factual data. ML can help to solve complex problems such
as the following;:

¢ When you may not know how to create complex code rules to make a decision.
For example, if you want to recognize people's emotions in image and speech,
there are just no easy ways to code the logic to achieve that.

e When you need human expertise to analyze a large amount of data for decision-
making, but the volume of data is too large for a human to do it efficiently. For
example, with spam detection, while a human can do it, the amount of data
volume makes it impractical to quickly do this manually.

e When relevant information may only become available dynamically in cases
where you need to adapt and personalize user behaviors based on individual
data. Examples are individualized product recommendations or website
personalization.

e When there are a lot of tasks with a lot of data available but you cannot track the
information fast enough to make a rule-based decision—for example, in fraud
detection and natural language processing.

Humans handle data prediction based on the results of their analyses and their experience.
Using ML, you can train a computer to provide expertise based on available data and get a
prediction based on new data.

The main idea behind ML is to make available a training dataset to an ML algorithm and
have it predict something from a new dataset, for example, feeding some historical stock
market trend data to an ML model and having it predict how the market will fluctuate in
the next 6 months to 1 year.

In previous sections, you learned about the various tools to process the data. ML is all
about data—the better quality the data you can feed in for training, the better the prediction
you get. Let's learn how data science goes hand in hand with ML in the next section.

[382]

Data Engineering and Machine Learning Chapter 13

Working with data science and ML

ML is all about working with data. The quality of the training data and labels is crucial to
the success of an ML model. High-quality data leads to a more accurate ML model and the
right prediction. Often in the real world, your data has multiple issues such as missing
values, noise, bias, outliers, and so on. Part of data science is the cleaning and preparing of
your data to get it ready for ML.

The first thing about data preparation is to understand business problems. Data scientists
are often very eager to jump into the data directly, start coding, and start producing
insights. However, without a clear understanding of the business problem, any insights you
develop have a high chance of becoming a solution which is unable to address a problem. It
makes much more sense to start with a clear user story and business objectives before
getting lost in the data. After building a solid understanding of the business problem, you
can begin to narrow down the ML problem categories and determine whether ML will be
suitable to solve your particular business problem.

Data science includes data collection, analysis, preprocessing, and feature engineering.
Exploring the data provides us with necessary information such as data quality and
cleanliness, interesting patterns in the data, and likely paths forward once you start
modeling.

As shown in the following diagram, data preprocessing and learning to create a ML

model are interconnected—your data preparation will heavily influence your model, while
the model you choose heavily influences the type of data preparation you will do. Finding
the correct balance is highly iterative and is very much an art (or trial and error):

f N\ Y4)
Labels ~=---
A
. [}
Labels _ N Training Dataset Learning Final Model New data

Algorithm

Raw Data v Test Data ! ‘ ‘

j v
o A R :
\ PreProcessing

Learning Evolution Prediction S
I\ VAN S

/‘ \ \ Deploy model

lendpoint in
production

This stage includes feature engineering Perform model trainin This stage includes model selection,
such as feature scaling, dimensionality ith test dataset 9 validation, tuning and hyper-parameter
reduction, one-hot encoding etc. loptimization.

ML workflow

[383]

Data Engineering and Machine Learning Chapter 13

As shown in the preceding diagram, the ML workflow includes the following phases:

¢ Preprocessing: In this phase, the data scientist preprocesses the data and divides
it into training, validation, and testing datasets. Your ML model gets trained with
the training dataset to fit the model, and is evaluated using the validation
dataset. Once the model is ready, you can test it using a testing dataset. Taking
into the amount of data and your business case, you need to divide the data into
training, testing, and validation sets, perhaps keeping 70% of the data for
training, 10% for validation, and 20% for testing.

Features are independent attributes of your dataset that may or may not influence
the outcome. Feature engineering involves finding the right feature, which can
help to achieve model accuracy. The label is your target outcome, which is
dependent on feature selection. To choose the right feature, you can apply
dimensionality reduction, which filters and extracts the most effective feature for
your data.

¢ Learning: In the learning phase, you select the appropriate ML algorithm as per
the business use case and data. The learning phase is the core of the ML
workflow, where you train your ML model on your training dataset. To achieve
model accuracy, you need to experiment with various hyperparameters and
perform model selection.

¢ Evaluation: Once your ML model gets trained in the learning phase, you want to
evaluate the accuracy with a known dataset. You use the validation dataset kept
aside during the preprocessing phase to assess your model. Required model
tuning needs to be performed as per the evaluation result if your model
prediction accuracy is not up to the exceptions as determined by validation data.

e Prediction: Prediction is also known as inference. In this phase, you deployed
your model and started making a prediction. These predictions can be made in
real time or in batches.

As per your data input, often, the ML model can have overfitting or underfitting issues,
which you must take into account to get the right outcome.

[384]

Data Engineering and Machine Learning Chapter 13

Evaluating ML models - overfitting versus
underfitting

In overfitting, your model fails to generalize. You will determine the overfitting model
when it performs well on the training set but poorly on the test set. This typically indicates
that the model is too flexible for the amount of training data, and this flexibility allows it to
memorize the data, including noise. Overfitting corresponds to high variance, where small
changes in the training data result in big changes to the results.

In underfitting, your model fails to capture essential patterns in the training dataset.
Typically, underfitting indicates the model is too simple or has too few explanatory
variables. An underfit model is not flexible enough to model real patterns and corresponds
to high bias, which indicates the results show a systematic lack of fit in a certain region.

The following graph illustrates the clear difference between overfitting versus underfitting
as they correspond to a model with good fit:

N h h
X2) ""21 . sz
‘e o,” o
ot o/t gt
o) - . o + - &‘ + :
0% 0%y o 4
+ v +'\ + ! +
0 a 0 u. . b‘"'b\ .
Underfitting %1 Good M Overfitting X1
(high bias) compromise (high variance)

ML model overfitting versus underfitting

In the preceding graphs, the ML model is trying to categorize between two data point
categories illustrated by the red points and green crosses. The ML model is trying to
determine whether a customer will buy a given product or not. The graph shows
predictions from three different ML models. You can see an overfitted model (on the right)
traversing through all red data points in training and failing to generalize the algorithm for
real-world data outside of the training dataset. On the other hand, the underfitted model
(on the left) leaves out several data points and produces an inaccurate result. A good model
(shown in the middle) provides clear predictions of the data points in most of the cases.
Creating a good ML model is like creating art and you can find the right fit with model
tuning.

[385]

Data Engineering and Machine Learning Chapter 13

The ML algorithm is at the heart of the overall ML workflow, which is categorized into
supervised and unsupervised learning.

Understanding supervised and
unsupervised ML

In supervised learning, the algorithm is given a set of training examples where the data and
target are known. It can then predict the target value for new datasets, containing the same
attributes. For supervised algorithms, human intervention and validation are required, for
example, in photo classification and tagging.

In unsupervised learning, the algorithm is provided with massive amounts of data, and it
must find patterns and relationships between the data. It can then draw inferences from
datasets.

In unsupervised learning, human intervention is not required, for example, auto-
classification of documents based on context. It addresses the problem, where correct
output is not available for training examples, and the algorithm must find patterns in data
using clustering.

Reinforcement learning is another category where you don't tell the algorithm what action
is correct, but give it a reward or penalty after each action in a sequence, for example,
learning how to play soccer.

Following are the popular ML algorithm types used for supervised learning:

e Linear regression: Let's use the price of houses as a simple example to explain
linear regression. Say we have collected a bunch of data points that represent the
prices of houses and the sizes of the houses on the market, and we plot them on a
two-dimensional graph. Now we try to find a line that best fits these data points
and use it to predict the price of a house of a new size.

¢ Logistic regression: Estimates the probability of the input belonging to one of
two classes, positive and negative.

e Neural networks: In a neural network, the ML model acts like the human brain
where layers of nodes are connected to each other. Each node is one multivariate
linear function, with a univariate nonlinear transformation. The neural network
can represent any non-linear function and address problems that are generally
hard to interpret, such as image recognition. Neural networks are expensive to
train but fast to predict.

[386 1]

Data Engineering and Machine Learning Chapter 13

¢ K-nearest neighbors: It chooses the number of k neighbors. Find the k-nearest
neighbors of the new observation that you want to classify and assign the class
label by majority vote. For example, you want to categorize your data in five
clusters, so your k value will be five.

¢ Support Vector Machines (SVM): Support vectors are a popular approach in
research, but not so much in industry. SVMs maximize the margin, the distance
between the decision boundary (hyperplane), and the support vectors (the
training examples closest to the boundary). SVM is not memory efficient because
it stores the support vectors, which grow with the size of the training data.

¢ Decision trees: In a decision tree, nodes are split based on features to have the
most significant Information Gain (IG) between the parent node and its split
nodes. The decision tree is easy to interpret and flexible; not many feature
transformations are required.

e Random forests and ensemble methods: Random forest is an ensemble method
where multiple models are trained and their results combined, usually via
majority vote or averaging. Random forest is a set of decision trees. Each tree
learns from a different randomly sampled subset. Randomly selected features are
applied to each tree from the original features sets. Random forest increases
diversity through the random selection of the training dataset and a subset of
features for each tree, and it reduces variance through averaging.

K-means clustering uses unsupervised learning to find data patterns. K-means iteratively
separates data into k clusters by minimizing the sum of distances to the center of the closest
cluster. It first assigns each instance to the nearest center and then re-computes each center
from assigned instances. Users must determine or provide the k number of clusters.

Zeppelin and Jupyter are the most common environments for data engineers doing data
discovery, cleansing, enrichment, labeling, and preparation for ML model training. Spark
provides the Spark ML library, containing implementations of many common high-level
estimator algorithms such as regressions, page rank, k-means, and more.

For algorithms that leverage neural networks, data scientists use frameworks such as
TensorFlow and MxNet, or higher-level abstractions such as Keras, Gluon, or PyTorch.
Those frameworks and common algorithms can found in the Amazon SageMaker service,
which provides a full ML model development, training, and hosting environment.

Data scientists leverage the managed Jupyter environment to do data preparation, set up a
model training cluster with a few configuration settings, and start their training job. When
complete, they can one-click-deploy the model and begin serving inferences over HTTP.
ML model development is performed almost exclusively these days on files in HDFS, and
thus querying the Amazon S3 Data Lake directly is the perfect fit for these activities.

[387]

Data Engineering and Machine Learning Chapter 13

Machine learning is a very vast topic and warrants a full book to understand in more detail.
In this section, you just learned about an overview of machine learning models.

Summary

In this chapter, you learned about big data architecture and components for big data
pipeline design. You learned about data ingestion and various technology choices available
to collect batch and stream data for processing. As the cloud is taking a central place in
storing the vast amounts of data being produced today, so you learned about the various
services available to ingest data in the AWS cloud ecosystem.

Data storage is one of the central points when it comes to handling big data. You learned
about various kinds of data stores, including structured and unstructured data, NoSQL,
and data warehousing, with the relevant technology choices associated with each. You
learned about data lake architecture and benefits.

Once you collect and store data, you need to perform data transformation to get insight into
that data and visualize your business requirements. You learned about data processing
architecture along with technology choices to choose open source and cloud-based data
processing tools as per your data requirements. These tools help to get data insight and
visualization as per the nature of your data and organizational requirements.

Now, there are millions of small devices connected to the internet, referred to collectively as
the IoT. You learned about the various components available in the cloud to collect,
process, and analyze IoT data to produce meaningful insights. You learned about the ML
workflow, which includes data preprocessing, modeling, evaluation, and prediction. Also,
you learned about supervised and unsupervised learning with an overview of various
popular ML algorithms and available ML frameworks.

With time, organizations tend to accumulate the technology debt, and many legacy
applications are sitting in the data center, creating costs and consuming resources. In the
next chapter, you will learn about legacy application transformation and modernization.
You will learn about challenges with legacy systems and the techniques used to modernize
them.

[388]

14

Architecting Legacy Systems

Legacy systems are the applications that have been deployed in your data center for
decades without undergoing many changes. In a fast-changing technology environment,
these systems get outdated and are challenging to maintain. Legacy systems are not only
defined by their age but sometimes by their inability to meet growing business needs, due
to the underlying architecture and technology.

Often, large enterprises deal with legacy applications to run crucial day-to-day business
tasks. These legacy systems are spread across industries such as healthcare, finance,
transportation, and supply chain industries, and so on. Companies have to spend heavily
on maintenance and support of these systems, which warrants the need to architect legacy
systems. Rearchitecting and modernizing legacy applications helps organizations to be
more agile and innovative, and also optimizes cost and performance.

In this chapter, you will learn about challenges and issues with legacy applications, and
techniques to rearchitect them. Rewriting complex legacy applications may pose an
additional risk of business disruption, so you will learn about refactoring applications or
considering the option to migrate into a more flexible infrastructure. The following major
topics will be covered in this chapter:

¢ Learning the challenges of legacy systems

e Defining a strategy for system modernization

¢ Looking at legacy system modernization techniques

e Defining a cloud migration strategy for legacy systems

By the end of the chapter, you will have learned about various challenges and
modernization drivers for legacy systems. You will learn various strategies and techniques
for the modernization of legacy systems. As the public cloud is becoming a go-to strategy
for many organizations, you will learn about cloud migration of legacy systems.

Architecting Legacy Systems Chapter 14

Learning the challenges of legacy systems

A legacy application puts significant challenges in front of an organization. On the one
hand, there are critical applications that an organization has been using for decades, and,
on the other hand, there are legacy applications holding back the organization's pace of
innovation.

Now, in a huge competitive environment, the end users are looking for the most modern,
technologically advanced applications. All new features usually come with the latest
software, and legacy applications limit your ability to add those features and provide
benefits to end users. The following diagram shows some significant challenges that
organizations are facing with legacy systems:

.
[= 1|
@ “ o =

itfi i Incompatibility with
Dificull o Keap P wilh - her systoms Higher cost of Shortage of skills Vulnerableto
user deman maintenance and update and documentation corporsts Security

Challenges with a legacy system

As illustrated, the following points are the significant challenges that you will face with
legacy systems:

e Difficulty in keeping up with user demand
e Higher cost of maintenance and update
Shortage of skills and documentation
Vulnerable to corporate security issues
Incompatibility with other systems

Before we dive into the solution, it's better to understand the issues clearly. Let's explore
more about the challenges of a legacy system to understand these better.

[390]

Architecting Legacy Systems Chapter 14

Difficulty in keeping up with user demand

Customer focus is the key to business success, and being unable to keep up with the latest
technology trends can harm a business significantly. You can take the example of Nokia
mobile phones, which used to lead the world mobile-phone market. As smartphones came
into play nearly a decade ago, Nokia still stuck with a legacy system, and this resulted in
near bankruptcy. It was a similar story with Kodak—one of the largest businesses in the
photo-camera industry. Kodak was unable to move with digital innovation and adopt this
into its systems, which resulted in Kodak becoming bankrupt in 2012. There are many such
examples where large enterprises have been unable to survive due to a lack of legacy
modernization and innovation.

In the current climate of fast-changing technology and fierce competition, users are very
demanding. Now, organizations have to change as per the user's terms, as they have
multiple demands. As technology moves, the user moves with it and starts using the most
recent and popular app. Your competitor can jump ahead if they are providing new
features as per the user demand.

A legacy system also poses challenges for enterprise applications with an internal user base.
An old system that was built on mainframes mostly uses the command line, which is not
very user-friendly in the digital age, whereas new-generation workers demand a more
user-friendly system to perform their routine tasks. However, you may face significant
resistance from management, who may have been working with legacy systems for decades
and are settled with this.

Higher cost of maintenance and update

As legacy systems have been all set up and working for decades, they may look less
expensive. But over time, the total cost of ownership turns out to be higher, as support and
updates of older systems are usually more costly. Often, those updates are not available out
of the box, and lots of manual workarounds are required to maintain the system. Most
legacy systems are not very automation-friendly, resulting in more human effort.

Legacy systems mostly have a large chunk of proprietary software, which results in
significantly higher license fees. In addition to that, older software no longer receives
support from providers, and buying additional support out of the life cycle could be very
costly. On the other hand, modern systems mostly adopt open source technologies that
drive the cost down. The operational outage from a legacy system can take more time to
recover from and drives up operational expenses. People with the skill set to maintain
legacy systems (such as DB2, COBOL, Fortran, Delphi, Perl, and so on) are hard to find,
which can increase hiring costs and system risk significantly.

[391]

Architecting Legacy Systems Chapter 14

Legacy systems are pretty significant in the aspect of code. Unused code adds another layer
of unnecessary maintenance and complexity to a system. Legacy applications have been in
operation for decades, and over time, many new changes will have been accommodated
without code being cleaned, which amounts to lots of technical debt. Any initiative to
reduce technical debt could be risky due to unknown impacts and dependencies. As a
result, organizations are forced to invest in unnecessary code and system maintenance due
to fear of breaking the system by making any major changes.

However, modernizing legacy systems may be costly due to unknown dependencies and
outages. Careful cost-benefit analysis (CBA) needs to be taken into consideration, along
with determining the return on investment (ROI) when deciding to proceed with
modernization. As stakeholders don't see the immediate benefit of modernization,
procuring finances for legacy modernization can be challenging.

Shortage of skills and documentation

Legacy technologies (such as mainframes) have multiple complex components that depend
on each other. These are extensive proprietary and costly servers that are not readily
available if someone wants to develop skills on their own. It is challenging to retain
application-development resources, and even more challenging to hire people with hands-
on experience in old technology and operating systems.

Often, legacy systems are two or more decades older, and most of the workforce with those
skills has retired. Also, these systems don't have the proper documentation to keep up the
record of years of work. There are chances of significant knowledge loss as an older
workforce rotates with a newer workforce. A lack of knowledge makes it riskier to change
the system due to unknown dependencies. Any small feature requests are challenging to
accommodate, due to system complexity and skill-set shortages.

New cutting-edge technologies such as big data, machine learning, and Internet of Things
(IoT) mostly build around new technology platforms. As new technologies are not well
integrated with legacy systems, an organization may lose out to a competitor if not able to
use the full capabilities of emerging technologies. A modern system helps to build an
organization brand as an innovative company where most of the new generation of the
workforce wants to work, and they lose interest in working with a legacy system.
Development and training is an even more significant source of expense for legacy
technologies.

[392]

Architecting Legacy Systems Chapter 14

Often, automation helps to reduce costs by reducing human effort. There are many tools
available around modern systems to build automation—such as DevOps pipelines, code
review, and automation testing—that a legacy system may not be able to utilize, resulting
in additional cost.

Vulnerable to corporate security issues

Security is the top priority for any organization and system. A legacy application that runs
on an old operating system (such as Windows XP or Windows 2008) is more vulnerable to
security issues due to lack of vendor support. Software vendors continuously determine
new security threats and release patches to accommodate them in the latest software
version, to secure them. Any legacy software that is announced as End of Life (EOL) from a
vendor doesn't get a new security patch, which leaves your application running in the old
software version, exposed to a number of security threats.

System health checks are often ignored for legacy applications, which make them more
vulnerable to be the target of security attacks. The skills gap makes it difficult to provide
continuous support and help, which means systems are run in an insecure manner. A
single vulnerability can pose a high risk of exposing your application, database, and critical
information to attackers.

In addition to a security vulnerability, legacy applications are hard to maintain due to
compliance. As compliances keep changing with time to enforce more tight security around
data handling and usage, legacy systems require changes to adhere to local governance and
compliance needs.

For example, the new European Union's General Data Protection Regulation (GDPR)
compliance requires each system to avail features where a user can request to delete their
data. While modern systems can provide these features out of the box in an automated and
self-service manner, in legacy systems this may need to be performed manually and
becomes more complex. Adhering to compliance needs can lead to more operation costs
and time-consuming maintenance.

[393]

Architecting Legacy Systems Chapter 14

Incompatibility with other systems

In addition to end users, every system needs to integrate with other IT systems. Those
systems may be a part of different departments, clients, partners, or suppliers. The various
systems need to exchange data in a standard format that evolves over time. Almost every
few years, files and data format standards get changed to increase data exchange efficiency,
and most systems require changes to adopt these. Hard-to-change legacy systems that stick
to using an old format could result in system incompatibility and a system that your
supplier and partner may not want to use. The inability to accommodate standard needs
adds greater risk to businesses due to complex workarounds and lost productivity.

Adding a workaround for simple business needs may make a system more complex.
Modern systems are built on a service-oriented architecture, which makes it easier to
accommodate any new requirement by adding a new service independently. Old systems
are often built on a monolithic architecture, and adding any new feature means you need to
rebuild and test the entire system.

Modern architectures are API-oriented and can be easily integrated with another system to
offload heavy lifting. For example, a taxi-booking app uses Google Maps for Global
Positioning System (GPS) navigation or Facebook and Twitter for user authentication. A
lack of APIs makes these integrations harder in a legacy system, resulting in complex
custom code.

As more load increases from another dependent upstream system, a legacy application can
face a scalability issue. Often, legacy applications are built on a monolithic architecture and
are hardware-dependent. Scalability is a big challenge with a monolithic system, as it
cannot scale horizontally due to hardware dependency and vertical scaling being limited to
the maximum system capacity. Breaking monolithic applications into microservices can
solve scaling challenges and help keep up with demand.

In addition to software maintenance, legacy applications are also costly for hardware
infrastructure as they run on a particular version. They spread across multiple databases
with duplicate data and similar functionality. Due to their monolithic nature, it's hard to
perform consolidation and use the flexibility of cloud-based infrastructure to save costs.
Let's look at the approach to the modernization of legacy systems.

[394]

Architecting Legacy Systems Chapter 14

Defining a strategy for system
modernization

Often, a legacy system gets left out of an overall enterprise digital strategy, and issues get
addressed on a need basis. Taking a reactive approach holds back organizations from
executing overall system modernization and benefits.

If your legacy system has serious business challenges such as security and compliance
issues or is unable to address the business need, you can take a big-bang approach. In the
big-bang method, you can build a new system from scratch and shut down the old system.
This approach has more risk but addresses a business need that can be mitigated from the
existing legacy system.

The other approach you can take is a phased approach, where you upgrade one module at
a time and keep running both old and new systems. A phased approach has less risk but
takes a long time and may be more expensive as you need to maintain both environments,
with additional network and infrastructure bandwidth.

Taking any of these approaches can provide various benefits once the modernization of an
application is completed. Let's look at some critical benefits of system modernization.

Benefits of system modernization

Creating a future digital strategy by addressing the growing need for legacy system
modernization can have many advantages, as shown in the following diagram:

e

Future-proof 'Y
business strategy NS

L v ® ()
- ’ _ulln
Ability to use cutting= ~~ ' _— Stay ahead of the
edge technologies * competition

Beneits of Legacy

— System nfodevmzaﬂon ~.

Applicating reliability
Cost saving and performance

Customer satisfaction

Benefits of legacy system modernization

[395]

Architecting Legacy Systems Chapter 14

The following are the significant benefits of an application modernization:

¢ Customer satisfaction: Using the latest technology gives a better user interface
(UI) and omnichannel experience. You don't need to build different variations of
the UI; it can be built once and deployed across devices such as laptops, tablets,
and smartphones. A fast and slick Ul leads to better customer experience and
business growth.

¢ Future-proof business strategy: Your application modernization allows you to
be more agile and innovative. The team can accommodate the changing needs of
the business comfortably and evolve with new technology.

¢ Stay ahead of the competition: Users always looking for the latest stuff and
tend to move into the new application, which gives a better experience. The
modernization of your application helps you to stay ahead of the competition by
adding the latest trends. For example, voice integration is extensively being
provided in apps, and you can enhance security with face detection. This is only
possible when your application is adopting the latest technology.

¢ Applicating reliability and performance: Every new version of a software API
and an operating system tries to address and improve performance issues. Using
the latest software and hardware helps you to achieve better performance,
scalability, and high availability. Application modernization helps you to reduce
operational outage and enhance security.

¢ Ability to use cutting-edge technology: Legacy systems prevent you from
getting insight from data that could help you to grow your business significantly.
By modernizing your database and creating a data lake, you can perform big
data and machine learning to get all kinds of insight. This also helps you to retain
employees when people get the opportunity to work in new technologies.

¢ Cost saving: Overall, any modernization leads to cost-saving by reducing
operational maintenance and providing a more natural upgrade. Utilization of
open source software reduces licensing costs, hardware flexibility helps to adopt
a cloud pay-as-you-go model, and automation helps to reduce the human
resources needed for routine jobs and improves overall efficiency.

However, there are several benefits of legacy system modernization, but these could be
very complex and require lots of effort. A careful assessment needs to be conducted to take
the right approach. Let's explore more on the assessment techniques of a legacy application.

[396]

Architecting Legacy Systems Chapter 14

Assessment of a legacy application

There may be multiple legacy systems in an organization, with tens of thousands, to
millions, of lines of code. In a modernization approach, a legacy system needs to align with
the business strategy and the initial cost of investment. Also, there is a possibility to
reutilize some parts of it or completely write it from scratch, but the first step is to conduct
the assessment and understand the overall system better. The following points are the
primary areas that solution architects need to focus on when conducting an assessment:

¢ Technology assessment: As a solution architect, you need to understand the
technology stack used by the existing system. If the current technology in use is
entirely outdated and lacks vendor support, then you might need to replace it
entirely. In the case of a better version of the technology being available, then you
can consider upgrading. Often, newer versions are backward-compatible, with
minimal changes required.

¢ Architecture assessment: You need to understand the overall architecture to
make it future-proof. There may be a case where you determine a minor upgrade
in the technology, but the overall architecture is monolithic and not scalable. You
should audit the architecture in the aspects of scalability, availability,
performance, and security. You may find significant architecture changes are
required to align the application with business needs.

¢ Code and dependency assessment: Legacy systems often have 100,000 lines of
code in a monolithic setting. Various modules tied to each other make the system
very complicated. The code appears not to be in use in one module might impact
some other modules if removed without much due diligence. These code lines
may have been written decades back and have missed regular refactoring and
review. Even if the technology and architecture look fine, you need to determine
if the code is upgradable and maintainable. We also need to understand if any
Ul-related upgrade is required to make the user experience better.

As a solution architect, you want to determine dependencies across various modules and
code files. Modules may tightly couple, and you need to define an approach to perform
simultaneous upgrades when modernizing the overall architecture.

[397]

Architecting Legacy Systems Chapter 14

Defining the modernization approach

For stakeholders, there may be no immediate incentive for application modernization. You
need to choose the most cost-effective method and deliver results faster. The following
diagram shows the modernization approach:

System
modernization

Complex Architecture
assessment A

design

Moderizati proof
o etr:\;fsa ion of Delivery
System evaluation concept Migration
modernization (POQ) approach

patterns

Legacy system modernization approach

After your system assessment, you need to understand the existing architecture pattern and
limitations. As per your tech stack, you need to evaluate migration tools. For example, you
may choose to use an emulator for mainframe migration or vCenter if rehosting your
application to VMware. You can select various modernization approaches and create a
proof of concept (POC) to identify any gaps. Some approaches are listed here:

¢ Architecture-driven modernization: Architecture-driven approach requires to
achieve the most agility. Often, an architectural approach is language-
independent and platform-independent by applying service-oriented patterns,
which gives the development team the flexibility to be more innovative. You may
want to choose this approach if you determine significant architectural changes
from your assessment. Start implementing the most critical feature first, and
build a POC to decide on gaps and effort required. Take the microservices
approach to achieve scalability and ensure better integration with other systems,
depending on the system.

e System re-engineering: In the re-engineering approach, the solution architect
needs to understand the legacy system deeply and perform reverse engineering
to build a new modernized application. You need to be sure to make technology
choices that help you to create a future-proof system. You may want to take this
approach if the legacy system is over-complicated and requires long-term
projects. Start with application modernization first and upgrade the database as a
final cutover in a phased approach. You need to build a mechanism where both
legacy and upgraded modules co-exist, with the ability to communicate in a
hybrid manner.

[398]

Architecting Legacy Systems Chapter 14

e Migration and enhancements: You can take migration and minor enhancement
approaches if your existing system technology works relatively well but is
restricted due to hardware limitation and cost. For example, you can lift and shift
the entire workload to the cloud for better infrastructure availability and cost
optimization. In addition to that, a cloud provider extends several out-of-the-box
tools, which helps you to make changes more frequently and apply better
automation. A migration approach helps you to modernize your application with
less effort and makes it future-proof, where it stays relevant for the long term.
However, lift and shift has its limitations, and may not be suited for all kinds of
workload.

Documentation and support

For the long-term sustainability of a new system and graceful migration to it, make sure to
prepare proper documentation and support. Document your coding standards, which
everyone can follow and which helps to keep the new system up to date. Keep your
architecture documents as working artifacts and keep them updated as technology trends
change. Keeping your system up to date will ensure that you don't fall into the legacy
system modularization situation again.

Prepare a comprehensive runbook to support new and old systems. You may want to keep
the old system for some time until the new system can accommodate all business
requirements and run satisfactorily. Update the support runbook, and make sure that you
don't lose knowledge due to employee attrition, and that the overall knowledge base is not
processed in a people-dependent manner.

Keeping track of system dependencies helps you to determine the impact of any changes in
the future. Prepare training content to train staff on the new system and make sure they can
support it in case of an operational outage.

[399]

Architecting Legacy Systems Chapter 14

Looking at legacy system modernization
techniques

As per your existing application analysis, you can take a different approach to upgrade
your legacy system. The most straightforward approach will be migration and rehosting,
where you don't need to make many changes in the existing system. However, a simple
migration may not solve the long-term problem or provide a benefit. You can take a more
complex approach, such as rearchitecting or redesigning the entire application if the system
is no longer meeting the business need. The following diagram illustrates the effort and
impact of the various methods:

Encapsulation, Re-hosting, and Re-
platforming

Re-factoring and Re-architecting ‘

Effort & Complexity

1oedw| g ASojouyda]

Re-designing and Re-placing

Legacy system modernization techniques

Let's look in more detail at the various modernization techniques shown in the preceding
diagram.

Encapsulation, rehosting, and re-platforming

Encapsulation is the simplest approach, and you may want to take this if the system is
business-critical and needs to communicate with other applications running on the latest
technology. In the encapsulation approach, you need to build an API wrapper around your
legacy system, which will allow other business applications to communicate with a legacy
application. An API wrapper is a common approach whereby you start migrating your
applications to the cloud but need to keep the legacy application in the on-premises data
center for modernization in the later phase. You can choose the encapsulation option if
your legacy code is well written and maintained, but, again, you will not be able to get the
benefit of technology advancement and hardware flexibility.

[400]

Architecting Legacy Systems Chapter 14

The rehosting approach is also among the most straightforward approaches, whereby you
want to migrate your application into another hardware provider such as the Cloud
without any changes in code. Again, as with encapsulation, the rehosting option can save
some cost due to vendor contracts but may not give you benefits from technology
advancement and hardware flexibility. An organization often takes this approach when it
needs to move out of an existing contract quickly. For example, you can take the first step
to the cloud in phase one and go for application modernization in phase two.

The re-platforming approach may get a bit more complex than the rehosting approach and
provides the immediate benefit of a new operating system. Organizations often choose this
approach if the server is going End of Life (EOL), where no support is available and an
upgrade becomes necessary to handle security issues. For example, if Windows Server 2008
is going EOL, you may want to upgrade the operating system to the Windows 2012 or 2016
version. You need to rebuild your binaries with the new operating system and perform
testing to make sure everything works properly, but there are no significant changes in the
code as such. Again, as with rehosting, re-platforming may not give you benefits from
technology advancement. However, it will allow you to have continuous support from the
vendor.

While the preceding three approaches are the simplest ones, they are not able to provide
the full benefit of the application upgrade. Let's look at approaches that help you to take
full advantage of application modernization.

Refactoring and rearchitecting

In the refactoring approach, you can refactor your code to accommodate the new system.
In refactoring, the overall architecture will be the same, yet you are upgrading your code to
make it more suited for the latest version of the programming language and operating
system. You can refactor the portion of code to apply automation and perform feature
enhancement. You may want to take this approach if your technology is still relevant and
able to accommodate business needs with code changes.

In the rearchitecting approach, you decide to change the system architecture by reutilizing
the existing code as much as possible. For example, you want to create a microservices
architecture out of your existing monolithic architecture. You can take one module at a time
and convert it into a service-oriented architecture by giving each module a RESTful
endpoint. The rearchitecting option helps you to achieve the desired scalability and
reliability; however, overall performance results may be average due to the reutilization of
existing code.

[401]

Architecting Legacy Systems Chapter 14

Redesigning and replacing

The redesigning approach is most complex but provides maximum benefit. You can choose
this approach if the legacy system is completely outdated and is not able to accommodate
business needs at all. With redesigning, you need to build the entire system from scratch
while keeping the overall scope intact. The following diagram shows the legacy mainframe

system migration to AWS Cloud:

Corporate data center AWS Cloud
o Gl S
" \&
Legacy hardware
Elastic Load Amazon Amazon SQS
Balancing API Gateway queues

Legacy operating system

COBOL, PL/I, RPG, C, Assembler " "
A Application '_-l la x
Transaction Batch model .@7 Z}

manager subsystem
Amazon EC2 Amazon EKS AWS Lambda
Database Data files compute containers microservices

Security Monitoring Scheduler @4 (?@:)

Amazon Aurora AWS Firewall AWS WAF
database Manager

Legacy mainframe system modernization to the cloud

Here, a legacy mainframe system is rearchitected and refactored to similar cloud services as
a modernization approach. Building a cloud-native application helps you utilize and fully
benefit from cloud services in aspects of scalability, performance, reliability, and cost. It
helps your team to be more agile and innovative by accommodating rapidly changing

technology in your system.

[402]

Architecting Legacy Systems Chapter 14

Redesigning a legacy system requires a long-term project with lots of effort and increased
cost. Before kicking off a large modernization effort, as a solution architect, you should do
careful analysis if any Software-as-a-Service (SaaS) product or commercially available off-
the-shelf (COTS) products are able to handle your business need with relatively lower

cost. It is essential to do a CBA for redesign versus purchase before proceeding with the
redesigning option.

Sometimes, it's more beneficial to replace the existing legacy system with new third-party
software. For example, your organization may have a decade-old Customer Relationship
Management (CRM) system that is not able to scale and provide the desired feature. You
may look for the option to subscribe to SaaS products such as Salesforce CRM to replace the
legacy system. SaaS products are subscription-based and offer per-user licenses, so they
may be the right choice if you have a smaller number of users. For a vast enterprise with
thousands of users, it may be more cost-effective to build its application. You should
conduct a CBA to understand ROI when investing in SaaS products.

Defining a cloud migration strategy for
legacy systems

As the cloud is becoming ever-more popular, more organizations are looking to migrate
into the cloud for their legacy application modernization needs. You learned about various
cloud migration techniques in chapter 5, Cloud Migration and Hybrid Cloud Architecture
Design. Cloud provides you with the flexibility to scale your application while keeping
costs low and helps to achieve desirable performance, high availability, and reliability
while maintaining application security.

[403]

Architecting Legacy Systems Chapter 14

Cloud providers such as Amazon Web Services (AWS) provide many options out of the
box, which can help you to modernize your system. For example, you can take a serverless
approach to build a microservice using the AWS Lambda function and Amazon API
Gateway, using Amazon DynamoDB as a backend. We discussed various legacy system
modernization techniques in the previous section, as well as all of the applications in the
context of moving to the cloud. The flow illustrated in the following diagram will help you
decide whether to use cloud migration to modernize your legacy application:

egacy application

Does app

Does app No _ generate

support —_— Retire revenue?

business?
1 Yes
Rehost Yes Can app be No Retain Perform

rehosted? assessment
Need code Need software/os
refactoring version upgrade

No Is app Refactor Replatform

replaceable?

l Yes

Repurchase

Cloud migration path for legacy system modernization

As shown in the preceding diagram, if your application is still heavily used by businesses
and is generating revenue, you may want to continue with minimal changes. In that
situation, you can refactor your application into the cloud or you can re-platform it into the
cloud if the server is going EOL.

[404]

Architecting Legacy Systems Chapter 14

In case you don't want to make any changes in existing applications to sustain business,
and still want to move to the cloud entirely to save and optimize costs, then take the lift and
shift approach to rehost the legacy application in the cloud. If your legacy application is
replaceable, then you can buy a cloud-native SaaS version of the product and retire your
legacy application. Sometimes, you may want to retain your legacy system in the on-
premises data center if there are too many business dependencies and it cannot move into
the cloud due to incompatibility.

You should perform a total cost of ownership (TCO) analysis to understand the
advantages of moving to the cloud. It is recommended to take the most complex module of
the legacy application and build a POC to make sure your entire system will be cloud-
compatible before starting the full project. A detailed POC that covers the critical business
cases will help you to identify any gaps and reduce migration risk significantly.

Summary

In this chapter, you learned about various challenges with legacy applications and why it is
essential to modernize your legacy application. You learned about different benefits an
organization can get by upgrading their application into the latest technology. Application
modernization can be a complicated and risky task but is often worth the effort.

The outcome you get from the upgrade is a trade-off for the amount of investment and
energy you put into it. Before defining the modernization approach, it's essential to
understand your legacy system thoroughly. You learned various assessment attributes of
an application in the aspects of technology, architecture, and code.

After the assessment, the next step is to define the modernization approach. You learned
about various modernization approaches, including architecture-driven, system re-
engineering, and migration approaches. You also learned about multiple techniques of
system modernization, which included the simplest approaches (encapsulation and
rehosting) and complex approaches (rearchitecting and redesigning). Cloud can provide a
significant value proposition, and you learned about the decision-making approach you
need to take for modernization on the cloud.

You focused on the various technical aspects of solution architecture; however,
documentation is one of the critical elements of architecture design to keep your system
maintainable in the long run. In the next chapter, you will learn about various
documentation required for a solution architect to prepare, contribute, and maintain to
maximize business value.

[405]

15

Solution Architecture Document

In previous chapters, you learned about various aspects of solution architecture design and
optimization. As the solution architect works on the design, it is important to have
consistent communication for successful application delivery. The solution architect needs
to communicate a solution design to all technical and non-technical stakeholders.

The Solution Architecture Document (SAD) provides an end-to-end view of application
and helps everyone to be on the same page. In this chapter, you will learn about various
aspects of the SAD, which addresses the need for all stakeholders associated with the
development of the application.

You will learn about the structure of the SAD and other types of documents of which the
solution architect needs to be aware, such as the request for proposal (RFP), where the
solution architect needs to provide input to make strategic decisions. You will learn the
following topics to gain a deeper understanding of the documentation involved in solution
architecture:

e Purpose of the SAD

Views of the SAD

Structure of the SAD

e IT procurement documentation for a solution architecture

By the end of this chapter, you will learn about the SAD, its structure, and the various
details that need to be accommodated in the documentation. You will learn about various
IT procurement documentation such as the RFP, the request for information (RFI), and the
request for quotation (RFQ), in which a solution architect participates to provide feedback.

Solution Architecture Document Chapter 15

Purpose of the SAD

The need for architecture documentation often gets ignored, and teams start working on
implementation without understanding the overall architecture. A SAD provides a broad
view of the overall solution design to keep all stakeholders informed.

The SAD helps to achieve the following purposes:

¢ Communicate the end-to-end application solution to all stakeholders.

e Provide high-level architecture and different views of the application design to
address the application's service-quality requirements such as reliability,
security, performance, and scalability.

e Provide traceability of the solution back to business requirements and look at
how the application is going to meet all functional and non-functional
requirements (NFRs).

¢ Provide all views of the solution required for design, build, testing, and
implementation.

¢ Define the impacts of the solution for estimation, planning, and delivery
purposes.

¢ Define the business process, continuation, and operations needed for a solution
to work uninterrupted after the production launch.

SADs not only define the purpose and goal of the solution but also address critical
components such as solution constraints, assumptions, and risks that often get overlooked
by the implementation team. The solution architect needs to make sure they create the
document in an easy language that business users can understand and relate business
context with technical design. Documentation helps to retain knowledge due to resource
attrition and makes the overall design process a people-independent one.

For existing applications where modernization effort is needed, a SAD presents an abstract
view of current and future architecture, along with a transition plan. The solution architect
understands the existing system dependencies and documents them to uncover any
potential risk in advance. The migration plan helps businesses to understand the tools and
technology required to handle the new system and plan resources accordingly.

[407]

Solution Architecture Document Chapter 15

During solution design, the solution architect conducts various assessments by building a
proof of concept (POC) or through market research. A SAD should list all architecture
assessments and their impact, along with the choice of technology. A SAD presents a
conceptual view of the current and target state of the solution design and maintains a
record of change. Let's understand various aspects of a SAD, in the next section.

Views of the SAD

The solution architect needs to create a SAD in such a way that it should be understandable
by both business users and technical users. A SAD bridges the communication gap between
the business user and the development team to understand the function of the overall
application. The best way to capture all stakeholders' input is by putting yourself in their
situation and looking at problems from the stakeholders' perspective. The solution architect
evaluates both the business and technical aspects of architecture design so that they can
take cognizance of all technical and non-technical users' requirements.

As illustrated in the following diagram, the holistic view of the SAD comprises of various
views derived from business requirements, to cover different aspects:

.) Business View
Operational View

Logical View

Data View Solution Architecture

Document Views

Process View
Implementation
View

Deployment View

SAD views

[408]

Solution Architecture Document Chapter 15

Solution architects can choose standard diagrams such as a Unified Modeling

Language (UML) diagram or a block diagram from Microsoft Visio to represent various
views. Overall, the diagram should be easy to read and understandable by all business and
technical stakeholders. A SAD should include the following views, wherever possible, to
address everyone's needs:

¢ Business View: Architecture design is all about addressing business concerns
and solving business purposes. The Business View shows the value proposition
of the overall solution and product. To simplify, the solution architect may
choose to detect high-level scenarios related to business and present these as a
use-case diagram. The Business View also describes stakeholders and the
required resources to execute the project. You can define the Business View as a
use-case view as well.

¢ Logical View: This presents various packages on the system so that business
users and designers can understand the various logical components of the
system. The logical view offers a chronicled order of the system in which it
should build. It shows how the multiple packages of the system are connected
and how the user can interact with them. For example, in a banking application,
the user first needs to authenticate and authorize using a security package, and
then log in to the account using the account package, or apply for a loan using a
loan package, and so on. Here, each package represents a different module and
can be built as a microservice.

e Process View: This presents more details, showing how the key processes of the
system work together. It can be reflected using a state diagram. The solution
architect can create a sequence diagram if you want to show more details. In a
banking application, a process view can present the approval of a loan or
account.

¢ Deployment View: This presents how the application is going to work in the
production environment. It shows how different components of the system (such
as network firewall, load balancer, application servers, database, and so on) are
connected. The solution architect should create a simple block diagram that
business users can understand. You can add more details to the UML
deployment diagram to show various node components and their dependencies
for technical users, such as the development and DevOps teams. The deployment
view represents the physical layout of the system.

[409]

Solution Architecture Document Chapter 15

¢ Implementation View: This is the core of the SAD, and represents architectural
and technology choices. The solution architect needs to put the architecture
diagram here—for example, if it is 3-tier, N-tier, or event-driven architecture,
along with the reasoning behind it. You also need to detail technology
choices—for example, using Java versus Node.js, along with the pros and cons of
using them. You want to justify the resources and skills required to execute the
project in the implementation view. The development team uses an
implementation view to create a detailed design such as a class diagram, but that
doesn't need to be part of the SAD.

e Data View: As most applications are data-driven, this makes the data view
important. The data view represents how data is going to flow between the
different components and how it will be stored. It can also be used to explain
data security and data integrity. The solution architect can use the entity-
relationship (ER) diagram to show the relationship between different tables and
schemas in the database. The data view also explains the reports and analytics
needed.

¢ Operational View: This explains how the system is going to be maintained post-
launch. Often, you define service-level agreements (SLAs), alert and monitoring
functionality, a disaster recovery plan, and a support plan for the system. The
operational view also provides details of how system maintenance is going to be
carried out, such as by deployment of a bug fix, patching, backup and recovery,
handling security incidents, and so on.

All the views listed make sure the SAD covers all aspects of the system and stakeholders.
You may choose to include additional views—such as a physical architecture view, a
network architecture view, and a security (controls) architecture view, and so on—as per
the stakeholder's requirement. As a solution architect, you need to provide a
comprehensive view of system functioning and understanding. Let's explore the structure
of the SAD in more detail, in the next section.

[410]

Solution Architecture Document Chapter 15

Structure of the SAD

The structure of the SAD can differ from project to project as per stakeholder requirements
and the nature of the project. Your project could be creating a new product from the
ground, modernizing a legacy application, or moving the entire system to the cloud. For
each project, the SAD document may differ, but, overall, it should consider various
stakeholders' views and consider the necessary sections, as shown in the following
screenshot:

4.2 Application Architecture

4.2.1 Application components
Contents 4.3 Data Architecture
L Solution Overview 43.1 Data Flow and Context

1.1 Solution Purpose 4.4 Integration Architecture
44.1 Interface Component

1.2 Solution Scope
1.2.1 In Scope

1.2.2 Out of Scope

4.5 Infrastructure Architecture
4.5.1 Infrastructure Component

1.3 Solution Assumptions S0 g Alcls dwl

4.6.1 Identity and Access Management
1.4 Solution Constraints 4.6.2 Application Threat Model
1.5 Solution Dependencies 5. Solution Implementation
1.6 Key Architecture Decisions 5.1 Development
2. Business Context 5.2 Deployment
2.1 Business Capabilities 5.3 Data Migration
2.2 Key Business Requirements 5.4 Application Decommissioning
22.1 Key Business Processes. .
222 Business Stakeholders 6. Solution Management
2.3 Non-Functional Requirements 6.1 Operational Management
23.1 Scalability 6.1.1 Monitoring and ‘Alf:l.'t
232 Availability and Reliability 6.12 Support and Incident Management
23.3 Performance 6.1.3 Disaster Recovery
23.4 Portability 6.2 User On-boarding
23.5 Security 6.2.1 User system requirement
3. Conceptual Solution Overview 7 Appendix
3.1 Conceptual and Logical Architecture 7.1 Open Items
4. Solution Architecture 7.2 Proof of Concept findings

4.1 Information Architecture
4.1.1 Information components

Structure of a SAD

[411]

Solution Architecture Document Chapter 15

In the preceding SAD structure, you can see different sections covering multiple aspects of
solution architecture and design. The solution architect may choose to add additional
subsections or remove some sections as per the project requirement. For example, you can
add another introduction section to talk about the document's purpose, with a summary.
For a transition project, you may add a subsection to present the existing architecture and
compare it with the target architecture, and so on. Let's look into the details of each section.

Solution overview

In the solution overview section, you need to give a brief introduction about the solution in
a couple of paragraphs, describing the functioning of the solution and its different
components at a very high level. It's nice to add a high-level block diagram, showing
various components in one place. The following diagram illustrates the solution overview
of an e-commerce platform:

Customer Order
Website/Marketplace
To Order Customer Service
Sales Order Inventory Data Ship Motification
Supply Chain &
Order Management
PAYMENT ‘ RETURN ‘ ‘ SHIPMENT ‘
' | ORDER
‘_ LA ‘ FULFILLMENT] RROMGHON
(] CANCEL
‘ TRANSPORT ‘ NOTIFICATION ‘ Ealis ‘

Solution overview of an e-commerce platform

[412]

Solution Architecture Document Chapter 15

You need to provide a brief about each component in simplified language so that the
business user can understand the overall working of the solution. Major subsections
include:

¢ Solution purpose: This provides a brief about a business concern that the
solution is solving and the justification to build a given solution.

¢ Solution scope: This states the business scope that the proposed solution will
address. Clarity describes out-of-scope items that the solution will not
accommodate.

e Solution assumptions: List down all the assumptions based on which solution
architect came up with the solution—for example, minimum network bandwidth
availability.

e Solution constraints: List all technical, business, and resource constraints. Often,
constraints come from industry and government compliances, and these need to
be listed in this section. You can also highlight the risk and mitigation plan.

e Solution dependencies: List all upstream and downstream dependencies. For
example, an e-commerce website needs to communicate with a shipping system
such as UPS or FedEx to ship a package to customers.

¢ Key architecture decisions: List major problem statements and the
corresponding proposed solution options. Describe the pros and cons of each
option, why a particular decision was made, and the rationale behind it.

After giving a solution overview, you want to relate it to the business context. Let's look at
the business context view in more detail, in the next section.

Business context

In the business context section, the solution architect needs to provide a high-level
overview of business capabilities and requirements that the solution is going to address.
This section only contains an abstract view of requirements. Detailed requirements need to
be a part of a separate requirements document. However, the external link of the
requirements document can be provided here. You should include the following primary
subsections:

* Business capabilities: Provide a brief description of business capabilities for
which the solution is being designed. Make sure to include the benefits of
capabilities and how they will address customer needs.

¢ Key business requirements: List all key business concerns that the solution is
going to address. Provide a high-level view of key requirements and add a
reference to the detailed requirements document.

[413]

Solution Architecture Document

Chapter 15

¢ Key business processes: Solution architects should show key processes with a
business process document. The following diagram illustrates a simplified view
of an e-commerce application business process model:

ProcessOrder

b

Updatelnventory

o

ChargeCustomer

P

i
3 | DeclineOrder | NotifyProcurement i
- | |

‘ SendNotification

R

UpdateOrderStatus |

Business process diagram of an e-commerce platform

¢ Business stakeholders: List stakeholders who are directly or indirectly impacted
by the project. This includes sponsors, developers, end users, vendors, partners,

and so on.

[414]

Solution Architecture Document Chapter 15

¢ NFRs: Solution architects need to focus more on NFRs as these often get missed
by the business user and development team. At a high level, an NFR should
include:

e Scalability: How can the application scale as workload fluctuates?
(For example, scale from 1,000 transactions per second to 10,000
transactions per second in a given day or month.)

¢ Availability and reliability: What is acceptable downtime for
system availability? (For example, 99.99% availability or 45
minutes' downtime per month.)

¢ Performance: What is the performance requirement? Where can
the system handle the load increase without impacting the end-
user experience? (For example, the catalog page needs to load
within 3 seconds.)

e Portability: Can the application run on multiple platforms without
any additional work? (For example, the mobile app needs to run in
the iOS and Android operating systems.)

¢ Capacity: What is the maximum workload that the application can
handle? (For example, the maximum number of users, the number
of requests, expected response time and expected application load,
and so on.)

The conceptual view of architecture is a sweet spot that provides a good system overview
for both business and technical stakeholders. Let's learn more about the conceptual view in
more detail.

Conceptual solution overview

The conceptual solution overview section provides an abstract-level diagram that captures
a big-picture view of the whole solution, which includes both business and technical
aspects. It provides a basis for analyses and trade-off studies that can help refine and
optimize the solution architecture in sufficient detail, to support solution design and
implementation. The following diagram illustrates a conceptual architecture diagram of an
e-commerce platform:

[415]

Solution Architecture Document Chapter 15

g =

Mobile App Account Service Account

Database
T\ AP| GATEWAY .

User
Website o i Shipping
Shipping Service Database

~1——&N i~ O

Point of sell Inventory
app Database
Inventory
Service

Store Front

Conceptual architecture diagram of an e-commerce platform

The preceding diagram shows an abstract view of significant modules and information
flow between them. The conceptual architecture provides a good understanding of the
overall architecture for both business and technical users. However, technical users need
further architectural depth. Let's dive deeper into the solution architecture, in the next
section.

Solution architecture

The solution architecture section dives deep into each part of the architecture and provides
different views that the technical team can use to create a detailed design and work on
implementation. These views could target different user groups such as developers,
infrastructure engineers, DevOps engineers, security engineers, user experience (UX)
designers, and so on.

[416]

Solution Architecture Document Chapter 15

Let's get into the following major subsections to learn more details:

¢ Information architecture: This section provides a user navigation flow to the
application. At a high level, the solution architect needs to put in an application
navigation structure. As shown in the following diagram, for an e-commerce
website, it is taking three clicks for the user to navigate to the desired page:

a = N

About Contact My
Home Products Us Us Account
Grocery Toy Clothing Electronic Profile QOrder Payment

§
L

Informational architecture diagram of an e-commerce platform

Solution architects can add more details such as website navigation, taxonomy, or
a high-level wireframe that UX designers can use to generate a detailed
wireframe.

¢ Application architecture: This section targets the development team. It provides
more implementation details upon which a software architect or development
team can build a detailed design. The following diagram shows the application
architecture for an e-commerce website, with technology building blocks such as
caching, networking, content distribution, data store, and so on:

[417]

Solution Architecture Document Chapter 15

Amazon 53 for logfile
clickStream data and product E VPC

image
Product @b
. Catalog and
@ Fleoommgndauon . Session Cache
Service
CACHE § CACHE
Search Engine
e 53 with Amazon
Elastic Cache ElasticSearch
Q) Jie}
o
Amazon CloudFront E-commerce
Application
Service
E :
Cart Checkout
Purchase request and Service DynamaDB for product
payment over SSL catalog, user profile,

user transaction store

Application architecture diagram of an e-commerce platform

For an application modernization architecture, this section lists all application
modules that need to retire, retain, re-platform, and transform.

e Data architecture: This section is primarily utilized by the database admin and
development team to understand database schemas and how tables are related to
each other. Often, this section includes an ER diagram, as shown in the following

screenshot:
Event Order_Processing g;deérd D
PK Event_ID PK Processing_EventlD er_|
Order_Number
Event_Type Event_ID Order T
Event_Name Order_ID er_'ype .
Event Li Order Event dat = Order_Quantity
vent_Loc er_Event_date Order Date
Ship_Address

ER diagram of an e-commerce platform

[418]

Solution Architecture Document Chapter 15

The data architecture section lists all data objects that need to be considered
during application development.

e Integration architecture: This section mainly targets vendors, partners, and other
teams. For example, as shown in the following diagram, it shows all integration
points with other systems for an e-commerce application:

Store

-.

User

-
Business to Customer E-Commerce
] ’ Website
A
Report

) .
Vendor Platform for ‘ Anallytlcs ‘
f/ ————» | product catalog update Service |
A

Product Catalog
A 4
-
Application Server }
oog
888, | ERP (Enterprise Resource Planning) }

™

System

-

Integration architecture diagram of an e-commerce platform

The integration architecture section lists all upstream and downstream systems,
and dependencies among them, regarding your application.

e Infrastructure architecture: This section is primarily targeted at the
infrastructure team and system engineers. The solution architect needs to include
the deployment diagram, which can give a view of the logical server location and
its dependencies. For example, the following diagram illustrates the production
deployment diagram for an e-commerce application. You can produce a separate
diagram for other environments such as dev, quality assurance (QA), and User
Acceptance Testing (UAT) environments:

[419]

Solution Architecture Document Chapter 15

E-Commerce Platform

Application
Server

% Database

User Desktop Browser
M

/"

Web Server

\
Sreememr]
% User Mobile App /

Deployment diagram of an e-commerce platform

This section lists all server configuration, databases, networks, and switches to
deploy the application.

¢ Security architecture: This section includes all the security and compliance
aspects of the application, including:
¢ Identity and Access Management (IAM) such as Active Directory
(AD), user authentication, authorization management, and so on.
e Infrastructure security such as firewall configuration, intrusion
prevention system (IPS)/intrusion detection system (IDS)
needed, antivirus software, and so on.

¢ Application security such as WAF, distributed denial-of-service
(DDoS) protection, and so on.

¢ Data security at rest and in-transit using Secure Sockets Layer
(SSL), encryption algorithms, key management, and so on.

Overall, the solution architect can include an application threat model to identify any
potential vulnerabilities such as cross-site scripting (XSS), SQL injection (SQLi), and so
on, and plan to protect the application from any security threat.

Solution delivery

The solution delivery section includes essential considerations to develop and deploy a
solution. It can consist of the following major subsections:

e Development: This section is essential for the development team. It talks about
development tools, programming language, code repository, code versioning,
and branching, with the rationale behind choices.

[420]

Solution Architecture Document Chapter 15

¢ Deployment: This section mainly focuses on DevOps engineers, and talks about
the deployment approach, deployment tools, various deployment components,
and deployment checklist, with the rationale behind choices.

e Data migration: This section helps the team to understand data migration and
the ingestion approach, scope of data migration, various data objects, data
ingestion tools used, source of data and data format, and so on.

¢ Application decommissioning: This section lists existing systems that need to be
decommissioned and an exit strategy for the current system if the return on
investment (ROI) is not being realized. The solution architect needs to provide
an approach and timeline for decommissioning the old system and carry out an
overall impact assessment.

The SAD includes a development approach and tools. However, it does not include an
application-level detailed design, such as a class diagram or adding pseudocode, as such
details need to handled by the software architect or senior developer under the
corresponding software application details design document. As a solution gets deployed,
it needs to be managed in production. Let's learn about the details that go into the solution
management section.

Solution management

The solution management section is focused on production support and ongoing system
maintenance across other non-product environments. The solution management section is
primarily targeted at the operations management team. This section addresses the
following areas:

¢ Operational management such as system patching and upgrades of dev, test,
staging, and prod environments.

¢ Tools to manage application upgrades and new releases.

e Tools to manage system infrastructure.

¢ System monitoring and alerts; operations dashboard.

¢ Production support, SLA, and incident management.

e Disaster recovery and Business Process Continuation (BPC).

During solution design, a solution architect needs to do research and collect data to validate
the right solution. Such kinds of additional details can be put in the Appendix section. Let's
learn more details of the Appendix section of a SAD.

[421]

Solution Architecture Document Chapter 15

Appendix section of SAD

Like every business proposal document, a SAD also has an Appendix section that is pretty
open, to put any data that supports your choices regarding the overall architecture and
solution. In the Appendix section, the solution architect can include open issues, any
research data such as the outcome of the POC, tools comparison data, vendors' and
partners' data, and so on.

In this topic, you got a good overview of the SAD structure with different sections. A SAD
should include the major sections mentioned previously; however, the solution architect
may choose to exclude some sections or include additional sections as per organization and
project requirements. As with other documents, it's essential to continue to iterate upon
SADs and look for an opportunity to improve. More robust SADs lead to well-defined
implementation guidelines and reduce any risk of failure.

A SAD is a running document that gets created during the initial stages and is kept up to
date over the years based on various changes throughout the application life cycle. In
addition to the SAD, solution architecture often gets involved in a significant procurement
proposal that has a specific requirement and is known as a request for x (RFx) document.
Let's familiarize ourselves with RFx documents.

IT procurement documentation for a
solution architecture

IT procurement documents are popularly known as RFx documents. This a term that
includes different stages of the procurement process. When you refer to RFx, it references
the formal requesting process. RFx documents are categorized as RFP, RFI, or RFQ
documents.

[422]

Solution Architecture Document Chapter 15

Solution architects are often involved in the procurement process to provide their input or
lead them. These procurements may be related to outsourcing, contracting, procuring a
software such as a database or development tools, or buying Saa$S solutions. As these
documents could be highly technical and have a long-term broad impact, the solution
architect needs to provide input, or respond to any procurement requirement and prepare
the invite. Let's understand the difference between different RFx documents, as follows:

¢ RFI: RFI comes early in the procurement process, where buyers invite
information from different vendors to make an informed decision regarding their
choice of procurement for a later stage. An RFI document collects information
about the capabilities of the various suppliers, where the buyer can compare all
suppliers in a similar parameter and proceed to the next proposal steps with
shortlisted suppliers.

¢ RFP: In this process, shortlisted suppliers from the RFI process have more
information about the outcome of the project. An RFP document is more open
than an RFI one, where suppliers can provide the best way to acquire solutions
for the buyer. The supplier can include multiple choices, with pros and cons of
each approach.

¢ RFQ: In this process, buyers narrow down the requirement compared to the RFP
and list down the exact requirement of work, equipment, and supplies. Suppliers
need to provide a cost for the listed requirements, and the buyer can choose the
best quotation among them to award the contract.

RFP is the most popular choice, as often, to speed up the process, buyer's organization
choose to ask for the RFP document only from potential vendors. In such a situation, the
RFP document needs to have the structure in place so that that buyer can put a clear
comparison between preferred vendors in terms of capabilities, solution approach, and cost
to make a quick decision.

Due to technicalities of procurement in IT organizations, solution architects play an
essential role in evaluating vendors' capabilities and approaches from the buyer side or
responding to RFP documents from the supplier side.

[423]

Solution Architecture Document Chapter 15

Summary

The purpose of a SAD is to keep all stakeholders on the same page and get formal
agreement on solution design and requirements. As stakeholders comprise of both business
and technical users, you learned about various views of the SAD that the solution architect
needs to consider. You need to include views for non-technical users, such as business,
process, and logical views. For technical users, include views such as application,
development, deployment, and operational views.

You learned about the detailed structure of the SAD, with major sections and subsections.
Various sections of the SAD include details such as an overview of the solution, business,
and conceptual architecture. You also learned about various architecture views such as
application, data, infrastructure, integration, and security, with reference to the architecture
diagram. You learned about other sections for solution delivery consideration and
operation management.

It was a long journey of learning. You are almost at the end of the book, but before closing,
you need to learn some tips to becoming a solution architect and continuing to improve on
your knowledge.

In the next and final chapter, you will learn about various soft skills such as communication
style, ownership, critical thinking, and continuous learning techniques to become a better
solution architect.

[424]

16

Learning Soft Skills to Become
a Better Solution Architect

In the previous chapters, you learned about how a solution architect needs to accommodate
all stakeholders' needs. Even if the solution architect's role is a technical one, they need to
work across the organization, from senior management to the development team. To be a
successful solution architect, soft skills are essential and critical factors.

A solution architect should keep themself up-to-date with current technology trends, keep
evolving their knowledge, and always be curious to learn new things. You can become a
better solution architect by applying continuous learning. In this chapter, you will learn
about methods to learn new technologies, and how to share and contribute back to the
technical community.

A solution architect needs to define and present an overall technical strategy to address
business concerns, which requires excellent presentation skills. A solution architect needs to
work across business and technical teams to negotiate the best solution, which requires
excellent communication skills. In this chapter, you will learn the soft skills a solution
architect must have, such as:

e Acquiring pre-sales skills

¢ Presenting to C-level executives

¢ Taking ownership and accountability

¢ Defining strategy execution and Objectives and Key Results (OKRs)
¢ Thinking big

e Being flexible and adaptable

¢ Design thinking

¢ Being a builder by engaging in coding hands-on

¢ Becoming better with continuous learning

¢ Being a mentor to others

¢ Becoming a technology evangelist and thought leader

Learning Soft Skills to Become a Better Solution Architect Chapter 16

By the end of this chapter, you will learn about the various soft skills required for a solution
architect to be successful in the role. You will learn about a method to acquire strategic
skills (such as pre-sales and executive communication), and develop design thinking and
personal leadership skills (such as thinking big and ownership). You will learn about
techniques to establish yourself as a leader and continue improving your skill set.

Acquiring pre-sales skills

Pre-sales is a critical phase for complex technology procurement, whereby the customer
collects detailed information to make a buying decision. In the customer organization, a
solution architect is involved in the pre-sales cycle to procure technology and infrastructure
resources from various vendors. In the vendor organization, the solution architect needs to
respond to customers' requests for proposals (RFP) and present a potential solution to
acquire new business for an organization. Pre-sales requires a unique skill set that combines
strong technical knowledge with soft skills, including:

¢ Communication and negotiation skills: Solution architects need to have
excellent communication skills to engage the customer with the correct and latest
details. Presenting precise details of the solution along with industry relevance
helps customers to understand how your solution can address their business
concerns. Solution architects work as a bridge between the sales and technical
teams, which makes communication and coordination a critical skill.

Solution architects also need to get an agreement by collaborating with customers
and internal teams, which requires excellent negotiation skills. In particular,
strategic-level decisions have a significant impact across multiple groups, where
solution architects need to negotiate between the team, work on trade-offs, and
come up with an optimizing solution.

e Listening and problem-solving skills: Solution architects need to have strong
analytical skills to identify the right solution as per the customer need. The first
thing is to listen to and understand customer use cases by asking the right
questions to create a good solution. You need to understand gaps and come up
with a solution to result in immediate business impact with long-term returns on
investment (ROIs). For some customers, performance is more important, while
others may be more focused on cost, based on their application user base. The
solution architect needs to provide the right solution as per their customer's
primary key performance indicator (KPI) goal.

[426]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

¢ Customer-facing skills: Often, the solution architect needs to work with both the
internal team and the external customer's team. They influence stakeholders at all
levels, from C-level executives to development engineers. They present solutions
and demos to senior management, where they look at your proposal more from a
business-prospecting perspective.

C-level executive support and commitment to initiatives always result in the
success of the adopted solution, which makes customer-facing skills very
important. The C-level executive needs details of the solution in a defined time-
bound meeting, and the solution architect needs to utilize the allotted time to
their best advantage. You will learn more information about the executive
conversation in the next section of this chapter—Presenting to C-level executives.

¢ Working with teams: The solution architect establishes a relationship with both
the business team and the product team. To prepare an optimal application, the
solution architect needs to work with the business team and technical team at all
levels. The solution architect needs to be a good team player and work with
multiple teams, share ideas, and find a way of working.

The aforementioned skills are not only required for pre-sales but are also applicable to the
solution architect's day-to-day job functions. Solution architects come from a technical
background, and, being in such a role, they need to acquire critical skills to communicate at
an executive level. Let's learn more about the executive conversation in the next section.

Presenting to C-level executives

A solution architect needs to handle various challenges from a technical and business
perspective. However, one of the most challenging tasks could be to get executive buy-in.
Senior executives such as the Chief Executive Officer (CEO), Chief Technology Officer
(CTO), Chief Financial Officer (CFO), and Chief Information Officer (CIO) are regarded
as C-level as they have a tight schedule and need to make lots of high-stack decisions. As a
solution architect, you may have lots of details to present, but your C-level meetings are
very time-bound. Here, they need to make the maximum value of their meeting in the
allotted time slot.

[427]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

The primary question is: How to get senior executives” attention and support in a limited

time? Often, during any presentation, people tend to put a summary slide at the end, while,
in the case of executive meetings, your time may further reduce as per their priority and
agenda. The key to an executive presentation is to summarize the primary points upfront in
the first 5 minutes. You should prepare in such a way that if your 30-minutes slot reduces
to 5 minutes, you should still be able to convey your points and get buy-in for the next step.

Explain your agenda and meeting structure even before the summary. Executives ask lots
of questions to make proper utilization of their time, and your agenda should convey that
they will get the chance to ask a clarification question. Support your summary based on
facts and data that align with their industry and organization. Keep details with you in case
they want to dive deep into a particular area; you should be able to pull up and show all
data.

Don't try to present everything in detail by stating information that may seem relevant
from your perspective but maybe doesn't make much sense for an executive audience. For
example, as a solution architect, you may focus more on benefits from the technical
implementation. However, senior management focuses more on ROI by reducing
operational overhead and increasing productivity. You should be ready to answer the
following questions that concern executives more:

e How the proposed solution will benefit our customers?: Business revolves
around the customer, while executives are looking at their company growth, but
that is only possible if their customers are satisfied. Make sure to do your

research on their customer base and their needs. Be ready to present benefits
backed by reliable data.

e What assumption did you make to baseline the solution?: Often, these meetings
are at the initial phase when you may not have enough details. Solution
architects always need to make some assumptions to baseline the solution. List
down your hypothesis in bullet points, and have a mitigation plan associated
with it in case things don't work as per assumption.

e What will be my ROI?: Executives are always looking for ROI by determining
the total cost of ownership (TCO). Be ready with data to provide an
estimated cost of ownership, solution maintenance cost, training cost, overall cost
savings, and so on.

e What happens if we continue as it is today and do nothing?: Senior
management may go into extreme vetting mode to identify ROI. They want to
understand if the investment is worth it. You need to be ready with your market
research—for example, technology trends, customer trends, and competitive
situation.

[428]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

e What will be our competitor's reaction in regard to your solution?: Competition
is everywhere, and often, the executive worries more about it. They want to
understand if your solution is innovative to beat the competition and give their
organization the edge. It's better to do some upfront research and add
competitiveness data relating to their industry and customer base.

e What is your suggestion, and how can I help?: You should always have a crisp
list of action items as the next step while providing your suggestion. You need to
get buy-in from executives and make them feel involved by asking for help. For
example, you can ask the CIO to connect you with the engineering team or
product team to take an overall solution to the next step.

Till now, in this chapter, we have talked about various soft skills such as communication,
presentation, listening, and so on. Let's now look more at the leadership skills a solution
architect should have as a technical leader for the organization.

Taking ownership and accountability

Taking ownership and positioning yourself as a leader helps you to win trust with
accountability. Ownership doesn't mean that you need to execute things alone; it is more
about taking new initiatives and holding on to them as it is your organization. You can
have ideas that can benefit your organization in terms of productivity, agility, cost-saving,
and increasing the customer base. Sometimes, you may not have the time or resources to
execute your idea, but you should always try to bring it forward as a new initiative, and
engage others for execution.

Accountability is about taking responsibility to drive the outcome. Ownership and
accountability go hand in hand, where you are not only creating initiative but working on
getting the result. People can trust you to execute any job and drive results. Accountability
helps you to build trust with your customers and team, which ultimately results in a better
work environment and achieving a goal.

As a solution architect, when you take ownership it helps you to see things from the
customer's and sponsor's perspective. You feel motivated and a part of something
meaningful that you enjoy doing. Make sure to define and create key successes and the
objective key result. The goal/objective should be measurable using specific key results, and
they must be time-bound. Let's learn more about Objectives and Key Results (OKRs).

[429]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

Defining strategy execution and OKRs

Strategy execution is complex and challenging. Excelling in strategy execution is essential
for realizing the organizational vision, mission, and goals. The idea needs to be brought
into actionable elements to keep teams aligned and everyone moving in the same direction.
Goal setting and management of goals is one of the best-established ways to get things

done in an organization.

OKRs are principles and practice (vision and execution) of goal setting. OKR is a strategy
management system that focuses on strategy execution. OKR is a simple framework that
lets you define the organization's primary strategy and its priorities. Objectives are the
principles, and key results are the practice—it is a what and how of organizational vision.
OKRs are based on four superpowers, as illustrated in the following diagram:

%

Alignment
I
L]
OKR's Superpower
-_—
Focus Tracking

y A

Stretching Goal

Superpowers of OKRs

OKRs' superpowers include:

e Focus: Start with the question: What are our main priorities, and where should people
concentrate their efforts? Commit to what truly matters and provide clarity on
what is essential.

e Alignment: Make goals public and transparent. Connect with the team and get
cross-team, bottom-up, and sideways alignment.

e Tracking: Visually track down the key results of each objective, down to the
percentage point.

[430]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

¢ Stretching Goals: Create ambitious goals to achieve something remarkable.
Stretching goals allows people to reimagine and rethink.

OKRs provide visibility and a meaningful outcome to all stakeholders at various levels,
from executive sponsors to teams. OKRs make the vision and mission of the organization
clear. Team members that are working on day-to-day activities need visibility and clarity to
the mission. They need to see how their everyday work has an impact on that
organizational mission. The OKR framework allows you to define this link and provide
visibility and meaning for everyone who is on the team.

Thinking big

Solution architects should have the ability to see the big picture and think ahead. A solution
architect creates a foundation upon which the team puts building blocks and launches the
product. Thinking big is one of the critical skills that solution architects should possess to
think about the long-term sustainability of an application. Thinking big doesn't mean you
need to take a very unrealistic goal. Your goal should be high enough to challenge you and
bring you out of your comfort zone. Thinking big is critical for success at both a personal
and an organizational level.

You should never doubt your capability while thinking big. Initially, it may seem
challenging to achieve, but as you start working toward the goal, you will find the way.
Believe in yourself and you will notice that others start supporting and believing in you.
Thinking big helps to inspire people around you to become a part of your success. Set up
long-term goals, such as Where do you want to see yourself and your organization in the next
decade? Take one step at a time to gear a short-term goal to a long-term goal.

Once you set up the stretching goal by thinking big, it will help you to take large initiatives
and explore new challenges. However, to deliver the result, you need support from your
peers and team, who can provide you with the right feedback and extend help as needed.
Become a person whom people want to help; and, of course, this is a two-way door. To get
help, you need to be open to helping others. Adaptability is another critical skill for
solution architects to work with others. Let's learn more about it.

[431]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

Being flexible and adaptable

Adaptability and flexibility go hand in hand, and you need to be flexible to adapt to the
new environment, working culture, and technology. Adaptability means you are always
open to new ideas and to working with the team. Teams may adopt a process and
technology that is best suited for them. As a solution architect, you need to be flexible in
accommodating team requirements during solution design.

A simple example of flexibility in a technical implementation can be facilitated by a
microservices architecture. In a microservices architecture, each service communicates with
the others via a standard RESTful API over the HTTP protocol. Different teams may choose
to write code in a different language of their choice, such as Python, Java, Node.js, or .NET.
The only requirement is that teams need to expose their APIs securely so that the entire
system can build upon utilizing them.

To get a more innovative solution, you need a different mindset and perspective to look
into the problem. Encouraging teams to fail fast and innovate helps an organization to be
competitive. The personal traits of flexibility are demonstrated by:

¢ Thinking about various solutions to solve a problem with the team and take the
best approach.

¢ Helping team members to offload their work.

¢ Volunteering to fill up a place if a team member needs to take time off for weeks
due to personal work reasons.

e Being able to collaborate effectively with teams across different locations and
time zones.

You need to be open-minded and adaptable to changes in technology and processes. You
may face resistance when bringing change to your team or organization. You need to
encourage others to be flexible and convey the importance of change. For example, when an
organization wants to move its workload from on-premises to cloud, they often face a
situation of resistance, as people have to learn a new platform. You need to explain the
value proposition of the cloud and how it will help them to be more agile and innovate
faster.

As a solution architect, you need to be adaptable to carry out multiple assignments and set
the right priority for execution. You should have the ability to adjust to the situation and
work under pressure. A solution architect needs to have critical design thinking to create an
innovative solution. Let's learn more about design thinking in the next section.

[432]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

Design thinking

A solution architect has the primary role of system design, which makes design thinking an
essential skill. Design thinking is one of the most successful approaches adopted across
industries to solve a challenging and unclear problem. Design thinking helps you to look at
problems and solutions from a different perspective, which you might not have considered
in the first instance. Design thinking is more focused on delivering results by providing a
solution-based approach to solve the problem. It helps to pretty much question the
problem, solution, and associated risk, to come up with the most optimized strategy.

Design thinking helps you to redefine problems in a more human-centric way by putting
yourself in place of end users and customers. The following diagram illustrates the

primary principles of design thinking:

Show and tell Define the problem

clearly
Emphasis on
people

Principles of
design thinking

<

Think through the
design process

P o up a»

Experiment Q
often
Bias for action

collaboration

Principles of design thinking

The following points are some design-thinking principles:

¢ Emphasis on people: Collect feedback from various users and put yourself in
their place to understand the problem from a different perspective.

[433]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

¢ Cross-collaboration: Bring in people from different backgrounds to look for
problems in a diversified way, and make sure solutions accommodate everyone's
needs.

e Think through the design process: Understand the overall design process, with
clear goals and methods.

e Show and tell: Present your thoughts in visuals so that it will be easy to grasp for
everyone in the room.

¢ Define the problem clearly: Create a well-defined and clear vision for a given
challenge, which can help others understand clearly and encourage them to
contribute more.

e Experiment often: Create a prototype to understand the implementation of the
idea in real-life situations. Adopt a fail-fast strategy and experiment more often.

e Bias for action: The ultimate design to deliver a solution rather than just
thinking. Be proactive in pushing forward and coming up with activities that can
result in a workable solution.

Design thinking has a solid foundation to apply empathy and create a holistic view of the
given problem. To adopt design thinking, there is a five-phase model proposed by d.school
(https ://dschool.stanford.edu/resources/gett ingfstartedfwithfdesignfthinking).
They are a pioneer in teaching and applying design thinking. The following diagram
illustrates the five phases of design thinking;:

Empathize N

-

=

(8))

o Define |

wn

o

o

2 | Ideate |

(1]}

>

=)

> | Prototype |

>

oo

Test v

Five phases of design thinking

[434]

https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking
https://dschool.stanford.edu/resources/getting-started-with-design-thinking

Learning Soft Skills to Become a Better Solution Architect Chapter 16

Design thinking is an iterative approach that needs to evolve continuously. The output
from one phase can recursively be input to other phases until the solution gets solidified. A
brief overview of the phases follows:

Empathize: Empathy is the building block and foundation of design in the
human context. To empathize, you should observe your user behaviors and
engage with them to understand the actual issue. Try to immerse yourself
in—and experience—the problem by putting yourself in the situation.

Define: Empathizing helps to define the problem as you experience the user's
needs and the problem they are facing. In the define mode, you apply your
insight and define the problem clearly, which can fuel brainstorming to find an
innovative yet simple solution.

Ideate: The ideation phase is about moving from problem to solution. You work
with the team to find various alternative solutions by challenging assumptions.
You need to get an obvious solution out of your head and work collaboratively to
find all possible solutions, which allows for innovation.

Prototype: The prototype phase helps to convert ideas into a concrete solution.
Prototyping can provide lots of learning and help to resolve disagreements by
showing a proof of concept (POC). It helps to find out gaps and risks. You
should build a quick prototype without lots of investment, which allows you to
handle failure and increase learning.

Test: The test phase is about getting feedback on your solution and reiterating
accordingly. The test phase helps to redefine the solution and learn more about
your users.

Design thinking accommodates all the phases required to come up with a logical and
practical solution. You can relate the phases and principles of design thinking in your real
life when designing an application architecture. There is special stress on prototyping, as
that is the only way to solidify your proposal and existing solutions with data and facts. A
solution architect's primary job is to understand the business concern and create a technical
solution design with a prototype that the team can implement. To build a prototype, the
solution architect needs to get their hands dirty and engage in coding hands-on. Let's learn
more about it.

[435]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

Being a builder by engaging in coding
hands-on

A solution architect is a builder who learns by doing. A prototype is worth a thousand
pictures. It helps to reduce miscommunication and ideate solutions. Presenting a POC and
prototyping is an integral part of the solution architect's role. Prototyping is the pre-
solution phase, which helps to deepen your understanding of the application design and
user. It helps you to think and build multiple solution paths. With the testing of the
prototype, you can refine your solution and inspire others, such as teams, customers, and
investors, by demoing your vision.

A solution architect is a technical leader who works closely with the development team. In
the empowered agile team of developers, a solution architect needs to show a piece of code
as a POC, in addition to a PowerPoint presentation. A solution architect doesn't need to be
part of the development team but works in collaboration to convey the solution to the dev
team in their language. Successful delivery is only possible if the solution architect can
understand the deep technical aspect of a solution that comes with continuous coding,
hands-on.

A solution architect is often seen as a mentor and player-coach; having some hands-on
coding helps them to establish credibility. A solution architect needs to take a strategic
decision regarding which programming languages and tools the team should use. A hands-
on approach helps to identify any gaps that may not fit for your team or solution
need—always learning new technology helps the solution architect to make a better
decision on behalf of the organization. Let's learn more about the techniques of continuous
learning.

Becoming better with continuous learning

Solution architects need to continually absorb new knowledge and enhance their skill set to
help the organization in better decision making. Continuous learning keeps you relevant
and builds confidence. It opens up your mind and changes prospects. Learning could be
challenging with a full-time job and a busy family life. Continuous learning is about
developing the habit of always learning something new, whereby you have to be motivated
and disciplined. You first need to set up learning goals and apply effective time
management to achieve them. This often slips through the net when you get busy with
regular daily work.

[436]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

Everyone has their own style of learning. Some people may like formal education; some
may read books; others may want to listen to and watch tutorials. You need to find the
learning style that is most effective for you and suited to your lifestyle. For example, you
can choose to listen to audiobooks and tutorials when commuting to work. You can read
books during a business-trip flight or watch video tutorials during exercise hours in the
gym. Overall, you need to make some adjustments to put time aside from your busy work
life for continuous learning. Here are some of the ways to engage yourself in constant
learning;:

¢ Learning new technologies, frameworks, and languages by trying them out:
Solution architects are the builders and are ready to experiment hands-on. As a
successful solution architect, you need to keep learning new technologies by
building a small POC. Getting an understanding of modern programming
languages and frameworks will help you to provide the best advice on
technology adoption for an organization and team.

¢ Learning new skills by reading books and tutorials: Online learning has
brought a revolution and has made it easy to learn and dive deep in any area.
You now have massive knowledge bases at your fingertips, to learn anything. An
online platform such as Udemy or Coursera provides thousands of video tutorial
courses in all areas that you can watch online or download to your device for
offline learning.

Similarly, there are millions of books available in Kindle to read anytime and
anywhere. Audiobook platforms such as Audible and Google Play's audiobooks
can help you to listen to the book during your commute. There are so many
convenient resources available that there is no excuse not to apply continuous
learning.

¢ Keeping up with technology news and developments by reading articles on
websites and blogs: The best way to keep yourself updated with technology
trends is by subscribing to technical news and blogs. TechCrunch.com,
Wired.com, and Cnet.com are some of the popular websites to get the latest
technology trends. A major newspaper such as CNBC or The New York Times, BBC
News and CNN channels, and so on have technology articles that give a good
insight into industry trends. You can subscribe to blogs for new learning in the
respective technology area. For example, for cloud platform learning, you can
subscribe to Amazon Web Services (AWS) blogs, which has thousands of articles
and use cases in the area of AWS Cloud, and similar blogs are available from
other public clouds such as Azure and Google Cloud Platform (GCP).

[437]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

e Writing your blog, whitepaper, and book: Sharing knowledge is the best way to
learn as you think through use cases when trying to present to others. Publishing
blogs and articles in popular blog-publishing platforms such as medium.com,
Blogger, and Tumblr helps you to share your learning and also learn from others.
Active participation in question-and-answer platforms helps you to find an
alternative solution for any given problem. Some popular question/answer
platforms are Quora, Reddit, StackOverflow, Stack Exchange, and so on.

e Solidify your knowledge by teaching others: Teaching others helps you to
collaborate and get a different perspective of your knowledge. Often, use cases
asked by participants give you different ways of finding a solution. Running a
full-day workshop with a hands-on lab and concept building helps you to
solidify your learning and learn with others.

e Taking online classes: Sometimes, you want to go for formal learning to be more
disciplined, and you want to be flexible. Online courses provide flexibility and
help you to adjust to other priorities and save time. Online courses can offer you
an organized way to learn new technology and help to enhance knowledge.

¢ Learning from teammates: Teammates share the same context, and you spend
most of the day with them. Learning with team members can help to speed up
your learning. The team can adopt a divide-and-conquer strategy whereby each
team member can share the topics among them and present dive-deep brown-
bag sessions. Brown-bag sessions are a standard method used by many
organizations to conduct regular learning sessions among team members. Each
team member shares their new learning in a weekly brown-bag learning session,
and everyone quickly learns new topics.

e Attending and participating in user groups and conferences: All large vertical
industry and technology organizations conduct a conference to provide insight
on new technology trends and hands-on sessions. Participating in industry
conferences and user group meetings helps to develop networking and
understand technology trends. Some of the large technology conferences from
industry leaders include AWS re:Invent, Google Cloud Next, Microsoft Ignite,
SAP SAPPHIRE, Strata Data conference, and so on. You can create a local user
group and conduct a meet-up in your local area, which will help you to
collaborate with professionals across industries and organizations.

A solution architect plays a technical leadership role, and a good leadership warrant to
prepare more leaders like you, which is possible through mentorship. Solution architects
should play a player-coach role and mentor others. Let's look at this in more detail.

[438]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

Being a mentor to others

Mentoring is about helping others and setting them up for success based on your learning
and experience. It is an effective way to develop leaders by having one-to-one
mentor/mentee relationships. To be a good mentor, you need to establish an informal
communication style where the mentee can develop a comfort zone. The mentee can seek
advice in multiple areas such as career development, or in personal aspects such as work-
life balance. You should do an informal needs assessment and set up mutual goals and
expectations.

Mentorship is more about listening. Sometimes, people need someone to listen to them and
advise as required. You should listen carefully first and understand their point of view.
Help them to make their own decisions as this will make them feel more accomplished. As
a good mentor, when advising for a career, you need to be open to advise what is the best
fit for the mentee, even if it may not necessarily be the best fit for the company. Always
provide honest, constructive feedback to help them identify gaps and overcome them.

The critical trait of a mentor is the ability to inspire people. Often, people may choose you
as a mentor if they see a role model in you. Help your mentee to realize their full potential
without putting your view forward, and help them achieve what they never thought of
earlier. There are always mutual benefits to being a mentor; you also learn a lot from
mentees about people's behaviors and growth. Being a mentor to others will ultimately
help you to become a better leader and person.

Becoming a technology evangelist and
thought leader

Technology evangelism is about being an expert, to advocate technology and your product.
Some organizations with a large product base roll out a separate technology evangelist role,
but often, a solution architect needs to take the role of an evangelist as part of their job. As a
technology evangelist, you need to be between people to understand real-world problems
and advocate your technology to solve their business concerns.

Technology evangelism involves participating in an industry conference as a public speaker
and promoting your respective platform. It allows you to become a thought leader and an
influencer, which can help the organization to increase the adoption of its platform and
product. Public speaking is one of the critical skills required for a solution architect, in
order to interreact on various public platforms and present in front of a large audience.

[439]

Learning Soft Skills to Become a Better Solution Architect Chapter 16

An evangelist also creates and publishes content such as blog posts, whitepapers, and
microblogs to advocate their product. They socialize the content to increase adoption and
interreact with the user to understand their feedback. An evangelist works backward from
the customer and communicates feedback to the internal team to help to make the product
better. With time, as an evangelist, you will refine the message that works in the best
interests of the organization.

Overall, a solution architect is a role with multiple responsibilities, and taking more
ownership will help you to better succeed in your career.

Summary

In this chapter, you learned about the various soft skills required for a solution architect to
be successful. A solution architect needs to have pre-sales skills such as negotiation,
communication, problem-solving, and listening, which help them to support the pre-sales
cycle for the organization, such as with the RFP. You learned about the presentation skills
required for executive conversation and buy-in.

You learned about the strategic understanding that a solution architect should have to
define key objectives and results for an organization. To execute at various levels, solution
architects should have the ability to think big and be flexible and adaptable. You learned
details about solution architects taking ownership and being accountable for their actions.

A solution architect's role has the primary responsibility of architecture design. You learned
about design thinking, with its principles and phases. You also learned about the
importance of continuous learning and different techniques to keep learning and keep
yourself up-to-date with market trends. You also learned about the additional
responsibilities of the solution architect—to work as a mentor and evangelist.

It was a long journey where you went through 16 chapters to learn all about solution
architects, from their roles and responsibilities to a different aspect of solution design and
architecture optimization. I hope you have learned a lot, and that it will help you to
develop your career as a solution architect or help you to succeed in your current role.

Happy learning!!!

[440]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Software
Architect's
Handbook

Software Architect's Handbook
Joseph Ingeno

ISBN: 978-1-78862-406-0

¢ Design software architectures using patterns and best practices

Explore the different considerations for designing software architecture

Discover what it takes to continuously improve as a software architect

Create loosely coupled systems that can support change

Understand DevOps and how it affects software architecture

Integrate, refactor, and re-architect legacy applications

https://www.packtpub.com/in/application-development/software-architects-handbook

Other Books You May Enjoy

AWS SysOps

AWS SysOps Cookbook - Second Edition
Eric Z. Beard, Rowan Udell, Et al

ISBN: 978-1-83855-018-9

Secure your account by creating IAM users and avoiding the use of the root login
Simplify the creation of a multi-account landing zone using AWS Control Tower
Master Amazon S3 for unlimited, cost-efficient storage of data

Explore a variety of compute resources on the AWS Cloud, such as EC2 and
AWS Lambda

Configure secure networks using Amazon VPC, access control lists, and security
groups

Estimate your monthly bill by using cost estimation tools

Learn to host a website with Amazon Route 53, Amazon CloudFront, and S3

[442]

https://www.packtpub.com/in/cloud-networking/aws-administration-cookbook-second-edition

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[443]

A

A/B testing 343, 344
accelerated processing unit (APU) 202
Access Control List (ACL) 245
accessibility 69
accountability 429
Active Directory (AD) 223, 420
Active Directory Authentication Library (ADAL) 231
Active Directory Certificate Services (AD CS) 232
Active Directory Domain Service (AD DS) 231
Active Directory Federation Service (ADFS) 232
Active Directory Lightweight Directory Services (AD
LDS) 232
Active Server Page (ASP) 142
agent-based solutions 115
agentless solutions 115
Agile manifesto 49, 50
Agile methodology
need for 48, 49
agile tools
burndown chart 52
definition of Done 53
planning poker 52
product backlog 52
sprint board 52
agile
architecture 54
process and terminology 50
scrum team 51
sprint ceremonies 51
versus waterfall 53, 54
alert
automating 98
alerting mechanisms 104
Amazon Dynamo DB 212
Amazon Elastic Block Store (EBS) 210

Index

Amazon Elastic Cloud Compute (EC2) 202
Amazon Elastic Container Repository (ECR) 203
Amazon Elastic Containers Service (ECS) 183,
203
Amazon Elastic File Storage (EFS) 210
Amazon Elastic Kubernetes (EKS) 205
Amazon Elastic Kubernetes Service (EKS) 183
Amazon Elastic load balancer (ELB) 217
Amazon Elasticsearch Service (Amazon ES) 214
Amazon Machine Image (AMI) 268
Amazon Redshift 319
Amazon Route 53 215
Amazon Simple Notification Service (SNS) 164
Amazon Simple Queue Service (SQS) 161
Amazon Simple Storage Service (S3) 155, 209,
300, 362
Amazon Web Services (AWS) 20, 137, 192, 288,
315,323, 404, 437
anti-patterns, in solution architecture
avoiding 187, 188, 189
Apache Kafka 360
app caching pattern 174, 175
application architecture
database, handlingin 184, 185
application layer 143
application monitoring
about 290
example 290
application optimization
considerations 131
Application Programming Interface (APIl) 150
application testing
automating 98
application-specific integrated circuit (ASIC) 201
architect evangelist 32
architectural reliability, design principles
about 259

automation, applying 260
capacity, monitoring 261
distributed system, creating 260, 261
recovery validation, performing 262
self-sealing system, making 259
architectural security
technology, selecting 227
architecture design
for performance 85, 86
architecture performance, principles
caching, applying 197, 198
concurrency, handling 196, 197
latency, reducing 192, 193, 194
throughput, improving 194, 195
architecture performance
principles, designing for 192
architecture reliability
data replication, creating 264
disaster recovery (DR), planning 266, 267
improving, with cloud 276, 277
technology selection 262
architecture
scaling 59, 60
array-based replication 265
Asset Panda 285
asynchronous data replication
versus synchronous data replication 264, 265
Atomicity, Consistency, Isolation, Durability (ACID)
367
attributes, solution architecture
accessibility 69
budget 76
business continuity 65
compliance 73
cost optimization 76
disaster recovery 65
elasticity 57
extensibility 67, 68
fault-tolerance 64
high availability 62
interoperability 70, 71
maintainability 72
operational excellence 72
portability 70, 71
redundancy 64

[445]

resiliency 62
reusability 67, 68
scalability 57
security 73
usability 69
authentication 74
Authentication Server (AS) 229
authorization 74
automating 98, 99
automation 330
applying 260
AWS Certificate Manager (ACM) 253
AWS cloud shared security responsibility model
about 254, 256
AWS responsibilities 255
customer responsibilities 255
AWS CodeCommit 345
AWS Data Migration Service (DMS) 363
AWS Data Sync 363
AWS Key Management Service (KMS) 251
AWS Trusted Advisor 324

B

best practices, for securing application
about 242
application and operating system, hardening 242

firewall and trusted boundary, configuring 243,
245

IDS/IPS, using 246
software vulnerabilities and secure code,
applying 243
big data architecture 355, 356, 357
big data processing pipelines
designing 357, 358, 359
big-bang approach 395
bits per second (bps) 194
blue-green deployment 338, 339
bounded contexts 156
budget
about 76
versus forecast 308
buffer 239
build phase 342
build server 345
bulkheads pattern

implementing 176, 177
business continuity 65
Business Intelligence (Bl) 34, 357
Business Process Continuation (BPC) 421

C

C-level executives 427
cache aside pattern 175
cache distribution pattern
in three-tier web architecture 169, 170
cache proxy pattern 171, 172
cache-based architecture
application caching 168
building 166, 167, 168
client side 168
database caching 168
DNS cache 168

layer 168

wed caching 168
caching 86
canary analysis 339
capacity

monitoring 261
capital expenditure (CapEx) 9, 306
CD strategy
blue-green deployment 338, 339
immutable deployment 340, 341
implementing 337
in-place deployment 338
red-black deployment 340
rolling deployment 338
Center for Financial Industry Information Systems
(FISC) 8
Center of Excellence (CoE) 112
central processing unit (CPU) 200
Certification Authority (CA) 253
challenges, of legacy systems
about 390
difficulty, in keeping up with user demand 391
higher cost, of maintenance and update 391,
392
incompatibility, with other systems 394
skills and documentation, shortage 392, 393
vulnerable, to corporate security issues 393
change data capture (CDC) 363

[446]

Chaos Monkey 298
charge-back mechanism 310
check-and-balance approach 311
Chief Executive Officer (CEQO) 427
Chief Financial Officer (CFO) 427
Chief Information Officer (CIO) 427
Chief Technology Officer (CTO) 427
CI/CD pipeline
continuous testing, implementation 341, 342,
343
circuit breaker pattern 176
Classless Inter-Domain Routing (CIDR) 245
cloud architect 31
cloud computing models
Infrastructure as a Service (laaS) 22
Platform as a Service (PaaS) 22
Software as a Service (SaaS) 22
cloud data migration 124, 125, 126
cloud migration strategy, cloud-native approach
about 108
refactor 109
repurchase strategy 109
cloud migration strategy, Lift and Shift approach
about 106
rehost 106
relocate 107, 108
replatform 107
cloud migration strategy
cloud-native approach 108
creating 104, 105, 106
for legacy systems 403, 405
Lift and Shift approach 106
retain or retire strategy 110
retain strategy 110
retire strategy 111, 112
cloud migration
application migration, performing to cloud 124
application optimization, in cloud 131, 132
application, designing 121, 122, 123
cloud application, operating 130, 131
cutover 127,128
information, analyzing 115,116
integration 127, 128
migration plan, creating 117, 118,119, 120
steps 113

steps for 112, 113
validation 127, 128
workload, discovering 113, 114, 115
cloud providers 137
cloud service offering 23
cloud-based AWS Cloud9 integrated development
environment (IDE) 344
cloud-native Amazon RDS 123
cloud-native architecture
benefits 102, 103, 104, 137
designing 135, 136, 137
cloud-native monitoring 104
cloud
architecture reliability 277
architecture reliability, improving with 276
CloudWatch 322
commercially available off-the-shelf (COTS) 403
compliance 73
concurrency
about 195
handling 196, 197
Concurrent Versions System (CVS) 350
configuration items (Cl) 286
configuration management (CM) 334, 335
Configuration Management Database (CMDB) 286
configuration management tools
comparison 334
constraints
overcoming 95, 96
container-based deployment
about 179, 180, 182, 183, 184
benefits 180, 181, 182
content distribution network (CDN) 60, 74, 83,
168,170,192,197, 240
continuous cost optimization 311
continuous integration and continuous deployment
(Cl/ICD)
about 72,243,326, 330, 331, 332
combining, with DevSecOps 336, 337
continuous learning 436, 437, 438
cost optimization, design principles
about 306
budget, planning 308
continuous cost optimization 311
demand management 310

[447]

forecast, planning 308
service catalog management 310
total cost of ownership (TCO), calculating 306,
308
track of expenditure, keeping 310, 311
cost optimization, techniques
about 312
architectural complexity, reducing 312, 313, 314
cost usage and report, monitoring 318, 319,
320, 321, 322, 323
governance, implementing 316
IT efficiency, increasing 314, 316
standardization, applying 317, 318
cost optimization
about 76, 305
in public cloud 323, 324
cost-benefit analysis (CBA) 392
cross-site scripting (XSS) 74, 238, 295, 420
Customer Relationship Management (CRM) 127,
229,403
cutover process 128

D

d.school 434
dark launch 340
dashboards 288
data analytics
about 373,374
technology choices 375, 376, 377, 378
data architect 34
Data Encryption Standard (DES) 249
data encryption
asymmetric-key encryption 249
symmetric-key encryption 249
data ingestion
about 359, 360
technology choices for 360, 361
to cloud 362, 363
data lakes
about 371, 373
benefits 372
data processing
about 373, 374
technology choices 375, 376, 378
data replication

creating 264
data science
working with 383, 384
data security
about 75, 248
data classification 248
data encryption 249, 252
encryption key management 250
data storage
about 364, 365
selecting, factors 92
technology choices 366
using 92, 94
data tier 143
data visualization
about 378
technology choices 378, 379
data warehousing 367, 368
data-driven design 94, 95
database layer 144
database scaling 61, 62
database
handling, in application architecture 184, 185
DDoS attack
SYN floods 237
User Datagram Protocol (UDP) reflection 237
defense-in-depth (DiD) approach 224
Department of Defense Cloud Computing Security
Requirements Guide (DoD SRG) 8
deployment automation 99
design principles, for architectural security
about 223
authentication and authorization control,
implementing 223
automating 225
blast radius, reducing 224
data protection 226
monitoring and auditing mechanism 225
response, preparing 226
security, applying 224
design thinking
about 433
phases 435
principles 433
development phase 342

[448]

DevOps architect 36
DevOps in Security (DevSecOps)
about 326, 335
combining, with CI/CD 336, 337
DevOps tools, using for CI/CD
about 344
Cl server 345, 346, 347
code deployment 347, 348, 349
code editor 344
code pipeline 349, 350
source code management 345
DevOps-related metrics
examples 332
DevOps
about 327, 328
benefits 328, 329
best practices, implementing 351, 352
components 329
configuration management (CM) 334, 335
continuous integration/continuous delivery
(Cl/ICD) 330, 331, 332
Infrastructure-as-a-Code (laaC) 333
monitoring and improvement 332, 333
digital signal processor (DSP) 202
direct-attached storage (DAS) 209
directed acyclic graphs (DAGs) 375
disaster recovery (DR)
about 65,126
best practices, applying for 275, 276
planning 266, 267
disk mirroring 210
distributed denial-of-service (DDoS) 74, 83, 295
distributed system
creating 260, 261
DNS routing strategy 215, 216
Docker 203
Domain Name Server (DNS) 177
Domain Name System (DNS) 83, 168, 224, 338
DR scenarios
about 267
backup and restore 268,269
multi-site strategy 274, 275
pilot light 269, 271
warm standby 272,273,274

E

Elastic Compute Cloud (EC2) 295, 347
Elastic IP (EIP) 178
Elastic Load Balancing (ELB) 173
Elastic MapReduce (EMR) 291, 374
Elastic Network Interface (ENI) 178
Elasticsearch, LogStash, and Kibaba (ELK) 213
encapsulation 400
encryption key management, methods
AWS Key Management Service (KMS) 251
envelope encryption 250
HSM 252
end-of-life (EOL) 393

Enhanced Data Rates for Global Evolution (EDGE)

224
Enterprise Resource System (ERP) 227
enterprise solution architect 29
entity-relationship (ER) 410
envelope encryption 250, 251
event stream model 165, 166
event-driven architecture
creating 163
event stream model 165, 166
publisher/subscriber model 163, 164
exabytes (EB) 364
extensibility 67, 68
extensible markup language (XML) 232
extract, transform, and load (ETL) 34, 133, 300,
374
ExtraHop 300

F

fault-tolerance 64, 65
Federal Risk and Authorization Management
Program (FedRAMP) 8, 301
Federated Identity Management (FIM) 228
field-programmable gate array (FPGA) 201
Finance Data (PCIl) 35
floating IP pattern
creating 178, 179
Fluentd 360
forecast
versus budget 308
Freshservice 285

[449]

FTP Secure (FTPS) 253

fully working low capacity stand-by 272

Function as a Service (FaaS) 22, 135, 155, 192,
199

G

G-Cloud 8

General Data Protection Regulation (GDPR) 8,
393

generalists 27

Global Positioning System (GPS) 394

Google Cloud Platform (GCP) 20, 22, 138, 192,
199,254, 288,323, 437

graphical processing unit (GPU) 200

H

Hadoop Distributed File System (HDFS) 371
Hadoop User Experience (HUE) 375
hard-disk drive (HDD) 193, 198, 208
hardware security module (HSM) 251
Health Insurance Portability and Accountability Act
(HIPAA) 8, 35,295

high availability (HA)

about 62

architecture, achieving 64
high-availability database pattern 186, 187
high-performance computing (HPC) 219
Hive Query language (HQL) 376
horizontal scaling 57
host-based IDS 247
host-based replication 266
Human/Computer Interaction (HCI) 343
hybrid cloud 20
hybrid cloud architecture

creating 133, 134, 135
hypervisor-based replication 266

Identity and Access Management (IAM) 97, 229,
420
Identity Cloud Service (IDCS) 232
identity provider (IdP) 229
immutable deployment 340, 341
immutable infrastructure
canary testing 87, 88

creating 87
in-place deployment 338
Information Gain (IG) 387
Information Security Registered Assessors
Program (IRAP) 8
Information Technology Infrastructure Library (ITIL)
131, 288
Information Technology Service Management
(ITSM) 131, 288
infrastructure architect 32, 33
Infrastructure as a Service (laaS) 22, 31, 192,
261,308
infrastructure as code (laC) approach 281, 333
infrastructure monitoring
about 289
example 289
infrastructure security 75
input/output operations per second (IOPS) 8¢,
195,207,289, 312
International Organization for Standardization
(ISO) s, 301
Internet Control Message Protocol (ICMP) 245
internet gateway (IGW) 246
Internet Message Access Protocol (IAMPS) 253
Internet of Things (loT)
about 34, 137, 355, 380, 381, 392
components 381
Internet Protocol (IP) 177
Internet Protocol Security (IPsec) 253
interoperability 70, 71
intrusion detection system (IDS) 33, 75, 246, 420
intrusion prevention system (IPS) 33, 75, 246,
420
IT Asset Management (ITAM) 284, 285
IT infrastructure
automating 98
IT Operation Analytics (ITOA) 298, 299
IT procurement documents
for solution architecture 422, 423
ITAM tools 285

J

Java Database Connectivity (JDBC) 344
Java Server Page (JSP) 142
JavaScript Object Notation (JSON) 11, 152

[450]

Jira Service Desk 285

job observer pattern 162, 163

JSON Web Token (JWT) 235

K

key performance indicators (KPIs) 34, 119, 259,
426

Kubernetes 204, 205

Kubernetes cluster 205

L

legacy system modernization techniques
about 400
encapsulation 400
re-platforming 401
rearchitecting 401
redesigning 402, 403
refactoring 401
rehosting 401
replacing 402, 403
legacy systems
cloud migration strategy for 403, 405
Lightweight Directory Access Protocol (LDAP) 231
live migration cutover 128, 129
load balancer
implementing 216, 217
Local Area Network (LAN) 33, 264
log monitoring 292, 293, 294
logging
automating 98
logic tier 143
loose coupling 88, 89, 90

Machine Learning (ML) 354, 382
working with 383, 384
maintainability 72
man-in-the-middle (MITM) attack 252
massive parallel processing (MPP) 200, 367
Memcached
versus Redis 175,176
mentoring 439
metrics 288
micro-benchmarking 344
microservice architecture

about 11

best practices 157

creating 156, 157
Microsoft Azure 138, 323
Microsoft Visio 409
minimum viable product (MVP) 96
ML model overfitting

versus ML models underfitting 385
ML model underfitting

versus ML model overfitting 385
monitoring

automating 98
MoSCoW 95
multi-factor authentication (MFA) 224, 228
Multi-Level Protection Scheme (MLPS) 8
multi-site strategy 274, 275
multi-tenant SaaS-based architecture

creating 144, 145, 146

data level isolation 145

database level isolating 145

row level isolation 145

table level isolation 145
Multi-Tier Cloud Security (MTCS) 8
multitier architecture 141

N

n-tier layered architecture

application layer 142, 143

building 141, 142

database layer 142, 143, 144

web layer 142
Net Present Value (NPV) 114
Network Access Control List (NACL) 245
Network Address Translation (NAT) 245
network architect 33
Network Interface Card (NIC) 178
network propagation 193
network security 74
network transmission medium 193
network-attached storage (NAS) 252
network-based IDS 247
network-based replication 265
Nginx 217
non-functional requirement (NFR)

about 17, 407

[451]

consideration 39

defining 38, 40
nonrelational databases (NoSQL) 212
NoSQL data store

types 370
NoSQL databases

about 368

versus SQL Databases 369

versus SQL databases 369

o)

OAuth 234, 235
object-oriented analysis and design (OOAD) 68
Objectives and Key Results (OKRs)
about 430
superpowers 430
on-premises 20
online analytical processing (OLAP) 212, 213, 367
online transactional processing (OLTP) 211, 367
Open Web Application Security Project (OWASP)
243
OpenlID Connect 234, 235
OpenShift 205
operating system (OS) 326
operational excellence, designing principles
about 280
documentation, keeping 282, 283
failures, predicting 282
failures, responding 282
improvements, keeping 282, 283
incremental changes, making 281
learning, from mistakes 282
operation, automating 280, 281
reversible changes, making 281
operational excellence, functioning
about 288
alerts, handling 295, 297
incident response 295
system health, monitoring 289
operational excellence, improvement tools
auditing 301
IT Operation Analytics (ITOA) 299, 300
Root cause analysis (RCA) 300
operational excellence, improvment tools
reporting 301

operational excellence

about 72

achieving, in public cloud 302, 303

achieving, services 302, 303

configuration management 286, 287, 288

improving 298

IT Asset Management (ITAM) 284, 286

planning 283, 284

technologies, selecting 283
operational expenditure (OpEx) 9, 306
organization units (OUs) 316
Organizational Security (SOC2) 35
ownership

taking 429

P

page cache 198
PagerDuty 285
parallel processing (MPP) 371
pay-as-you-go model 346
payment card industry (PCIl) 295
Payment Card Industry Data Security Standard
(PCIDSS) 8, 76
performance monitoring
managing 219
performance optimization, computational choice
going serverless 205, 206
server instance, selecting 200, 202
working, with containers 203
performance optimization, database
data search, building 213,214
nonrelational databases (NoSQL) 212
online analytical processing (OLAP) 212, 213
online transactional processing (OLTP) 211
performance optimization, networking choice
autoscaling, applying 217, 218, 219
DNS routing strategy 215, 216
load balancer, implementing 216,217
performance optimization, storage
working, with block storage 207

working, with cloud data storage 208, 209, 210

working, with file storage 208

working, with network area storage 208
working, with object storage 208, 209, 210
working, with SAN 207

[452]

performance optimization
computational choice, creating 199
database, selecting 210
networking choice, making 214, 215
storage, selecting 207
technology, selecting for 199
Personally Identifiable Information (Pll) 76, 121,
226
petabytes (PB) 362
phased approach 395
pilot light 270
Platform as a Service (PaaS) 22, 31, 205
platform monitoring
about 291
example 291
point of presence (PoP) 84
portability 70, 71
pre-sales skills
acquiring 426, 427
predictive scaling 79, 80, 81
presentation tier 142
private clouds 20
private data 248
process control tools
DAEMON Tools 243
Supervisord 243
production phase 343
proof of concept (POC) 44, 398, 408, 435
public cloud
about 19, 20
architecture 21, 22
cost optimization 323, 324
operational excellence, achieving 302, 303
providers 22
public data 249
Public Key Infrastructure (PKI) 253
public-key encryption 249
publisher/subscriber model 163, 164

Q

quality assurance (QA) 260, 326,419
queue-based architecture, patterns
about 161,162
advantages 162
job observer pattern 162, 163

queuing chain pattern 160
queue-based architecture

building 159

consumer 160

message 160

message broker 160

producer 160

queue 160

terminology 160
queuing chain pattern 160, 161, 162

R

random-access memory (RAM) 166, 259, 289
re-platforming 401
reactive scaling 82, 83
real-time voting application reference architecture
158, 159
rearchitecting 401
Recovery Point Objective (RPO) 36, 47, 65, 186,
262,282
recovery point objectives (RPO)
planning 263, 264
Recovery Time Objective (RTO)
about 36, 47, 65, 186, 262, 282
planning 263, 264
recovery validation
performing 262
Red Hat Enterprise Linux (RHEL) 286
red-black deployment 340
redesigning 402, 403
Redis
versus Memcached 175, 176
redundancy 64, 65
refactoring 401
examples 109
rehost 106
rehosting 401
Relational Database Management Systems
(RDBMS) 360
Relational Database Service (RDS) 291
relational databases 367
reliability 258
relocate 107, 108
rename distribution pattern 170, 171
replaceable resources

[453]

immutable infrastructure, creating 87
using 86, 87
replacing 403
replatform
about 107
technique 107
replication methods
about 265
array-based replication 265
host-based replication 266
hypervisor-based replication 266
network-based replication 265
Representational State Transfer (REST) 11, 91,
149, 252, 401, 432
repurchase
examples 110
request for information (RFI) 10, 406
request for quotation (RFQ) 406
request for x (RFx) 422
requests for proposals (RFP) 10, 406, 426
resiliency 62
resilient architecture
building 83, 85
resilient distributed datasets (RDDs) 361
responsibilities, solution architect
about 37, 38
engaging, with stakeholders 41
maintenance, ensuring 47
non-functional requirements, defining 38, 40
post-launch operability, launching 47
proof of concept (POC), developing 44
prototype, developing 44
solution delivery life cycle 45
solutions, designing 45, 46
technology selections, making 44
user requirements, analyzing 38
various architecture constraints, handling 41, 42
various architecture constraints, handling,
handling 43
working, as technology evangelist 47
working, with stakeholders 41
RESTful web service architecture 152
restricted data 248
Return on Investment (ROI) 12, 14, 42,109, 305,
392,421,426

reusability 67, 68
revolution per minute (RPM) 195
rewrite proxy pattern 173, 174
Rivest-Shamir—Adleman (RSA) 249
role-based authentication (RBA) 228
roles, agile scrum team
development team 51
product owner: 51
Scrum Master 51
Scrum Team 51
rolling deployment 338
root cause analysis (RCA)
about 226, 298, 300
refining 282
router hops 193

S

Salesforce CRM 308
scalability 57
scaling
capacity dilemma 58
horizontal scaling 57
vertical scaling 57
scope creep 43
search data stores 370, 371
Secure Socket Layer/Transport Layer Security
(SSL/TLS) 75
Secure Sockets Layer (SSL) 237, 296, 420
security architect
about 35
responsibilities 35
Security Assertion Markup Language (SAML) 232,
233,234
security automation 99
security monitoring
about 295
components 295
security
about 73
adding 97, 98
self-sealing system
making 259
server fleet elasticity 61
server migration 126, 127
serverless architecture

[454]

building 154, 155, 156
Service Level Agreement (SLA) 263,279, 333,
410
Service Principal Name (SPN) 230
service providers (SPs) 229, 232
service-oriented architecture (SOA) 11, 79, 90,
91, 92, 140, 148, 313
ServiceDesk Plus 285
short for Open Authorization (OAuth) 234
show-back mechanism 310
Simian Army
reference link 298
Simple Mail Transfer Protocol Secure (SMTPS)
253
Simple Object Access Protocol (SOAP) 11, 91,
149, 252
Simple Queue Service (SQS) 291
Simple Web Token (SWT) 235
Single Sign-On (SSO) 228
single tenancy 144
Small and Medium Size Businesses (SMBs) 266
SOA-based e-commerce website architecture
building 153, 154
SOAP Envelope
about 149
message body 150
parts 150
SOAP header 150
SOAP web service architecture 149, 150, 151
Software as a Service (SaaS) 31, 109, 144, 308,
403
22
Software Development Life Cycle (SDLC) 350
SolarWinds 285
solid-state drive (SSD) 198, 208
solution architect roles
architect evangelist 32
cloud architect 31
data architect 34
DevOps architect 36
enterprise solution architect 29
infrastructure architect 32, 33
network architect 33
security architect 35
technical architect 30
types 26, 28, 29

solution architect
about 6, 30
builder, by engaging in coding hands-on 436
in agile organization 48
responsibilities 37
roles 26

solution architecture document (SAD)
about 406
Appendix section 422
business context section 413, 414, 415
conceptual solution overview section 415, 416
purpose 407, 408
solution architecture section 416, 417, 418,

419, 420

solution delivery section 420
solution management section 421
solution overview section 412, 413
structure 411, 412
views of 408, 409, 410

solution architecture
about 7
benefit 13, 14
best technology platform, selecting 15
business needs, addressing 14
business requirement 9
cost and budget 9
creating, reasons 10
end user requirement 9
evolution 11
global compliance requirement 8
globally distributed team 8
in public cloud 19
IT infrastructure requirement 9
IT procurement documentation for 422
IT procurement documents for 423

non-functional requirements (NFRs), addressing

17,18,19
project lifecycle, managing 17
project timeline 9
quality of delivery, addressing 15
resource and cost management, handling 16
significance 12
solution constraints and issues, addressing 16
solution delivery, managing 17
solution implementation component 9

[455]

solution maintenance 9
technology selection 9
source code repositories 350
specialists 27
Splunk 300, 322
sprint ceremonies (scrum ceremonies)
backlog grooming 51
Sprint Daily Standup 51
Sprint demonstration 52
sprint planning 51
Sprint retrospect 52
SQL databases
versus NoSQL databases 369
SQL injection 74
SQL injection (SQLi) 238, 420
SSH File Transfer Protocol (SFTPS) 253
staging environment 342
stateless and stateful architecture designs
building 146, 147, 148
static content scaling 60
Statistical Analysis System(SAS) 62
stepped approach 395
Storage Area Network (SAN) 125,207, 252, 264
strategy execution 430
Structure Query Language (SQL) 238
structured data stores 366
SubversioN (SVN) 350
Super-fast, Parallel, In-memory Calculation Engine
(SPICE) 378
supervised ML
about 386, 387
types 386
Support Vector Machines (SVM) 387
synchronous data replication
versus asynchronous data replication 264, 265
system architecture
Chaos Gorilla 298
Latency Monkey 298
Security Monkey 298
system modernization
approach, defining 398, 399
assessment, of legacy application 397
benefits 395, 396
documentation 399
strategy 395

support 399

T

TCO component
human resources and training costs 307
operational and maintenance costs 307
purchase and setup costs 307
technical architect 30
technology evangelist 32
becoming 439
technology, for architectural security
about 227
application, securing 242
data security 248
user identity and access management 227, 228
web security, handling 236
templates 333
tensor processing unit (TPU) 201
tera floating point operation (TFLOP) 200
terabytes (TB) 362
thinking big 431
thought leader
becoming 439
three-tier architecture 141
three-tier web architecture
cache distribution pattern 169, 170
Ticket-Granting Server (TGS) 229
Ticket-Granting Ticket (TGT) 230
time to market (TTM) 327
total cost of ownership (TCO) 306, 405, 428
Transmission Control Protocol (TCP) 237
Transport Security Layer (TSL) 252
Twelve-Factor App
URL 352

U

Unified Modeling Language (UML) 409
Uniform Resource Identifier (URI)
about 240
using 152
Unique Resource Locator (URL) 150
unstructured data stores 371
unsupervised ML 386, 387
usability 69
User Acceptance Testing (UAT) 128, 342, 419

[456]

user experience (UX) 416
user identity and access management
AD 231
Amazon Web Services (AWS) Directory Service
232
FIM 229
Kerberos 229, 230, 231
OAuth 234
OpenID Connect 234
Security Assertion Markup Language (SAML)
232,233,234
SSO 229
user interface (Ul) 396

\'

vertical scaling 57

Virtual Interface (VIF) 362

Virtual Private Cloud (VPC) 362
Virtual Private Network (VPN) 33
Visual Studio Code (VSCode) 345
VMotion 108

VMware Cloud (VMC) 108

VPC Flow Logs 246

W

WAF sandwich architecture 241
warm standby 274
web app security vulnerabilities
about 236
buffer overflow and memory corruption attack
239
Cross-Site Request Forgery (CSRF) attacks
238,239
Denial of Service (DoS) 236
Distributed Denial of Service (DDoS) attacks 236
SQLi attacks 238
XSS attacks 238
Web Application Firewall (WAF) 74, 83,224
web layer 142
web security mitigation
about 239
DDoS mitigation 240, 242
WAFs 239
Web Application Firewall (WAF) 240
web security

about 74 web-based microservice architecture 11

app vulnerabilities 236 Wide Area Network (WAN) 33
handling 236 workload
mitigation 239 scaling 79

Web Services Description Language (WSDL) 150 Write once read many (WORM) 207

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: The Meaning of Solution Architecture
	What is solution architecture?
	Evolution of solution architecture
	Why is solution architecture important?
	The benefits of solution architecture
	Addressing the business needs and quality of delivery
	Selecting the best technology platform
	Addressing solution constraints and issues
	Helping in resource and cost management
	Managing solution delivery and project life cycle
	Addressing non-functional requirements

	Solution architecture in the public cloud
	What is the public cloud?
	Public clouds, private clouds, and hybrid clouds
	The public cloud architecture
	Public cloud providers and cloud service offering

	Summary

	Chapter 2: Solution Architects in an Organization
	Types of solution architect role
	Enterprise solution architect
	Solution architect
	Technical architect
	Cloud architect
	Architect evangelist
	Infrastructure architect
	Network architect
	Data architect
	Security architect
	DevOps architect

	Understanding a solution architect's responsibilities
	Analyzing user requirements
	Defining non-functional requirements
	Engaging and working with stakeholders
	Handling various architecture constraints
	Making technology selections
	Developing a proof of concept and a prototype
	Designing solutions and staying through delivery
	Ensuring post-launch operability and maintenance
	Working as a technology evangelist

	Solution architects in an agile organization
	Why Agile methodology?
	Agile manifesto
	Agile process and terminology
	Sprint ceremonies
	Agile tools and terms
	Agile versus waterfall
	Agile architecture

	Summary

	Chapter 3: Attributes of the Solution Architecture
	Scalability and elasticity
	The capacity dilemma in scaling
	Scaling your architecture
	Static content scaling
	Server fleet elasticity
	Database scaling

	High availability and resiliency
	Fault-tolerance and redundancy
	Disaster recovery and business continuity
	Extensibility and reusability
	Usability and accessibility
	Portability and interoperability
	Operational excellence and maintainability
	Security and compliance
	Authentication and authorization
	Web security
	Network security
	Infrastructure security
	Data security

	Cost optimization and budget
	Summary

	Chapter 4: Principles of Solution Architecture Design
	Scaling workload
	Predictive scaling
	Reactive scaling

	Building resilient architecture
	Design for performance
	Using replaceable resources
	Creating immutable infrastructure
	Canary testing

	Think loose coupling
	Think service not server
	Using the right storage for the right need
	Think data-driven design
	Overcoming constraints
	Adding security everywhere
	Automating everything
	Summary

	Chapter 5: Cloud Migration and Hybrid Cloud Architecture Design
	Benefits of cloud-native architecture
	Creating a cloud migration strategy
	Lift and Shift migration
	Rehost
	Replatform
	Relocate

	Cloud-native approach
	Refactor
	Repurchase

	Retain or retire
	Retain
	Retire

	Steps for cloud migration
	Discovering your workload
	Analyzing the information
	Creating migration plan
	Designing the application
	Performing application migration to the cloud
	Data migration
	Server migration

	Integration, validation, and cutover
	Live migration cutover

	Operating cloud application
	Application optimization in the cloud

	Creating a hybrid cloud architecture
	Designing a cloud-native architecture
	Popular public cloud choices
	Summary
	Further reading

	Chapter 6: Solution Architecture Design Patterns
	Building an n-tier layered architecture
	The web layer
	The application layer
	The database layer

	Creating multi-tenant SaaS-based architecture
	Building stateless and stateful architecture designs
	Understanding SOA
	SOAP web service architecture
	RESTful web service architecture
	Building an SOA-based e-commerce website architecture

	Building serverless architecture
	Creating microservice architecture
	Real-time voting application reference architecture

	Building queue-based architecture
	Queuing chain pattern
	Job observer pattern

	Creating event-driven architecture
	Publisher/subscriber model
	Event stream model

	Building cache-based architecture
	Cache distribution pattern in a three-tier web architecture
	Rename distribution pattern
	Cache proxy pattern
	Rewrite proxy pattern
	App caching pattern
	Memcached versus Redis

	Understanding the circuit breaker pattern
	Implementing the bulkheads pattern
	Creating a floating IP pattern
	Deploying an application with a container
	The benefit of containers
	Container deployment

	Database handling in application architecture
	High-availability database pattern

	Avoiding anti-patterns in solution architecture
	Summary

	Chapter 7: Performance Considerations
	Design principles for architecture performance
	Reducing latency
	Improving throughput
	Handling concurrency
	Apply caching

	Technology selection for performance optimization
	Making a computational choice
	Selecting the server instance
	Working with containers
	Docker
	Kubernetes

	Going serverless

	Choosing a storage
	Working with block storage and storage area network (SAN)
	Working with file storage and network area storage (NAS)
	Working with object storage and the cloud data storage

	Choosing the database
	Online transactional processing (OLTP)
	Nonrelational databases (NoSQL)
	Online analytical processing (OLAP)
	Building a data search

	Making the networking choice
	Defining a DNS routing strategy
	Implementing a load balancer
	Applying autoscaling

	Managing performance monitoring
	Summary

	Chapter 8: Security Considerations
	Designing principles for architectural security
	Implementing authentication and authorization control
	Applying security everywhere
	Reducing blast radius
	Monitoring and auditing everything all the time
	Automating everything
	Protecting data
	Preparing a response

	Selecting technology for architectural security
	User identity and access management
	FIM and SSO
	Kerberos
	AD
	Amazon Web Services (AWS) Directory Service
	Security Assertion Markup Language (SAML)
	OAuth and OpenID Connect (OIDC)

	Handling web security
	Web app security vulnerabilities
	Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks
	SQLi attacks
	XSS attacks
	Cross-Site Request Forgery (CSRF) attacks
	Buffer overflow and memory corruption attacks

	Web security mitigation
	Web Application Firewall (WAF)
	DDoS mitigation

	Securing an application and its infrastructure
	Application and operating system hardening
	Software vulnerabilities and secure code
	Network, firewall, and trusted boundary
	IDS/IPS
	Host-based IDS
	Network-based IDS

	Data security
	Data classification
	Data encryption
	Encryption key management
	Envelope encryption
	AWS Key Management Service (KMS)
	Hardware security module (HSM)

	Data encryption at rest and in transit

	Security and compliance certifications
	The cloud's shared security responsibility model
	Summary

	Chapter 9: Architectural Reliability Considerations
	Design principles for architectural reliability
	Making systems self-healing
	Applying automation
	Creating a distributed system
	Monitoring capacity
	Performing recovery validation

	Technology selection for architecture reliability
	Planning the RTO and RPO
	Replicating data
	Synchronous versus asynchronous replication
	Replication methods

	Planning disaster recovery
	Backup and restore
	Pilot light
	Warm standby
	Multi-site

	Applying best practices for disaster recovery

	Improving reliability with the cloud
	Summary

	Chapter 10: Operational Excellence Considerations
	Designing principles for operational excellence
	Automating the operation
	Making incremental and reversible changes
	Predicting failures and responding
	Learning from the mistake and refining
	Keeping operation's runbook updated

	Selecting technologies for operational excellence
	Planning for operational excellence
	IT Asset Management (ITAM)
	Configuration management

	The functioning of operational excellence
	Monitoring system health
	Infrastructure monitoring
	Application monitoring
	Platform monitoring
	Log monitoring
	Security monitoring

	Handling alerts and incident response

	Improving operational excellence
	ITOA
	RCA
	Auditing and reporting

	Achieving operational excellence in the public cloud
	Summary

	Chapter 11: Cost Considerations
	Design principles for cost optimization
	Calculating the total cost of ownership
	Planning the budget and forecast
	Managing demand and service catalogs
	Keeping track of expenditure
	Continuous cost optimization

	Techniques for cost optimization
	Reducing architectural complexity
	Increasing IT efficiency
	Applying standardization and governance
	Monitoring cost usage and report

	Cost optimization in the public cloud
	Summary

	Chapter 12: DevOps and Solution Architecture Framework
	Introducing DevOps
	Understanding the benefits of DevOps
	Understanding the components of DevOps
	CI/CD
	Continuous monitoring and improvement
	IaC
	Configuration management (CM)

	Introducing DevSecOps
	Combining DevSecOps and CI/CD
	Implementing a CD strategy
	In-place deployment
	Rolling deployment
	Blue-green deployment
	Red-black deployment
	Immutable deployment

	Implementing continuous testing in the CI/CD pipeline
	A/B testing

	Using DevOps tools for CI/CD
	Code editor
	Source code management
	CI server
	Code deployment
	Code pipeline

	Implementing DevOps best practices
	Summary

	Chapter 13: Data Engineering and Machine Learning
	What is big data architecture?
	Designing big data processing pipelines
	Data ingestion
	Technology choices for data ingestion
	Ingesting data to the cloud

	Storing data
	Technology choices for data storage
	Structured data stores
	Relational databases
	Data warehousing

	NoSQL databases
	SQL versus NoSQL databases

	Types of NoSQL data store
	Search data stores
	Unstructured data stores
	Data lakes

	Processing data and performing analytics
	Technology choices for data processing and analysis

	Visualizing data
	Technology choices for data visualization

	Understanding IoT
	What is ML?
	Working with data science and ML
	Evaluating ML models – overfitting versus underfitting
	Understanding supervised and unsupervised ML
	Summary

	Chapter 14: Architecting Legacy Systems
	Learning the challenges of legacy systems
	Difficulty in keeping up with user demand
	Higher cost of maintenance and update
	Shortage of skills and documentation
	Vulnerable to corporate security issues
	Incompatibility with other systems

	Defining a strategy for system modernization
	Benefits of system modernization
	Assessment of a legacy application
	Defining the modernization approach
	Documentation and support

	Looking at legacy system modernization techniques
	Encapsulation, rehosting, and re-platforming
	Refactoring and rearchitecting
	Redesigning and replacing

	Defining a cloud migration strategy for legacy systems
	Summary

	Chapter 15: Solution Architecture Document
	Purpose of the SAD
	Views of the SAD
	Structure of the SAD
	Solution overview
	Business context
	Conceptual solution overview
	Solution architecture
	Solution delivery
	Solution management
	Appendix section of SAD

	IT procurement documentation for a solution architecture
	Summary

	Chapter 16: Learning Soft Skills to Become a Better Solution Architect
	Acquiring pre-sales skills
	Presenting to C-level executives
	Taking ownership and accountability
	Defining strategy execution and OKRs
	Thinking big
	Being flexible and adaptable
	Design thinking
	Being a builder by engaging in coding hands-on
	Becoming better with continuous learning
	Being a mentor to others
	Becoming a technology evangelist and thought leader
	Summary

	Other Books You May Enjoy
	Index

